Curriculum Vitae: Ravishankar Sundararaman

Address: Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
Office: MRC 208B, Phone: (518)276-6757, Email: sundar@rpi.edu
PDF version, Scholar

Professional appointments

  • Priti and Mukesh Chatter ‘82 Career Development Chair (2022-present).

  • Associate Professor, Department of Materials Science and Engineering, Rensselaer Polytechnic Institute (2021-present).

  • Assistant Professor, Department of Materials Science and Engineering, Rensselaer Polytechnic Institute (2016-2021).

  • Postdoctoral fellow, Joint Center for Artifical Photosynthesis, Lawrence Berkeley National Laboratory and California Institute of Technology (2013-2016).

Education

  • Ph.D. Physics, Cornell University (August 2013).

  • B.Sc. + M.Sc. Physics, Indian Institute of Technology, Kanpur (June 2007).

Awards and fellowships

  • Rensselaer School of Engineering Research Excellence Award (2020)

  • AIME Robert Lansing Hardy Award (2020)

  • Materials Postdoc Fellowship, Lawrence Berkeley National Laboratory (2013-2015).

  • Best poster at the 24th annual workshop on Electronic Structure methods (2012).

  • Cornell Graduate School Fellowship (2007-08).

  • President’s Gold Medal in IIT Kanpur (2007).

  • Gold Medal at the 33rd International Physics Olympiad (2002)

  • Gold Medal at the Indian National Physics Olympiad (2001 & 2002)

  • KVPY fellowship of the Department of Science and Technology, Government of India (2000-2007)

Publications

Citations: 9100+, h-index: 42 (Scholar)

    2024

  1. Z. Wang, Z. Chen, R. Xu, H. Zhu, R. Sundararaman and J. Shi, “Challenges and opportunities in searching for Rashba-Dresselhaus materials for efficient spin-charge interconversion at room temperature”, Curr. Opin. Solid State Mater. Sci. 29, 101145 (2024)

  2. Q. P. Sam, Q. Tan, C. Multunas, M. T. Kiani, R. Sundararaman, X. Ling and J. J. Cha, “Nanomolding of Two-Dimensional Materials”, ACS Nano 18, 1110 (2024)

  3. A. Ghorashi, N. Rivera, B. Shi, R. Sundararaman, E. Kaxiras, J. Joannopoulos, and M. Soljacic, “Highly confined, low-loss plasmonics based on two-dimensional solid-state defect lattices”, Phys. Rev. Materials 8, L011001 (2024)

  4. M. M. Salour, J. G. Grote, G. Kataria, M. Chandra and R. Sundararaman, “Electromagnetic shielding using Anderson localization in nanoparticle–biopolymer composites”, J. Appl. Phys. 135, 025101 (2024)

  5. M. M. Kelley, R. Sundararaman and T. A. Arias, “Fully Ab Initio Approach to Inelastic Atom-Surface Scattering”, Phys. Rev. Lett. 132, 016203 (2024)

  6. J. Xu, K. Li, U. N. Huynh, M. Fadel, J. Huang, R. Sundararaman, V. Vardeny and Y. Ping, “How spin relaxes and dephases in bulk halide perovskites”, Nature Commun. 15, 188 (2024)

  7. 2023

  8. C. Multunas, A. Grieder, J. Xu, Y. Ping and R. Sundararaman, “Circular dichroism of crystals from first principles”, Phys. Rev. Materials 7, 123801 (2023)

  9. C. Zhang, J. Cheng, Y. Chen, M. K. Y. Chan, Q. Cai, R. P. Carvalho, C. F. N. Marchiori, D. Brandell, C. M. Araujo, M. Chen, X. Ji, G. Feng, K. Goloviznina, A. Serva, M. Salanne, T. Mandai, T. Hosaka, M. Alhanash, P. Johansson, Y.-Z. Qiu, H. Xiao, M. Eikerling, R. Jinnouchi, M. M. Melander, G. Kastlunger, A. Bouzid, A. Pasquarello, S.-J. Shin, M. M. Kim, H. Kim, K. Schwarz and R. Sundararaman, “2023 Roadmap on molecular modelling of electrochemical energy materials”, J. Phys. Energy 5, 041501 (2023)

  10. S. Adhikari, J. Clary, R. Sundararaman, C. B. Musgrave, D. Vigil-Fowler and C. A. Sutton, “Accurate Prediction of HSE06 Band Structures for a Diverse Set of Materials Using Δ‐Learning”, Chem. Mater. 35, 8397 (2023)

  11. C. R. Tezak, N. R. Singstock, A. W. Alherz, D. Vigil-Fowler, C. A. Sutton, R. Sundararaman, and C. B. Musgrave, “Revised Nitrogen Reduction Scaling Relations from Potential-Dependent Modeling of Chemical and Electrochemical Steps”, ACS Catal. 13, 12894 (2023)

  12. T. Shah, K. Fazel, J. Lian, L. Huang, Y. Shi and R. Sundararaman, “First-principles molten salt phase diagrams through thermodynamic integration”, J. Chem. Phys. 159, 124502 (2023)

  13. F. Kiani, A. R. Bowman, M. Sabzehparvar, C. O. Karaman, R. Sundararaman and G. Tagliabue, “Transport and Interfacial Injection of d-Band Hot Holes Control Plasmonic Chemistry”, ACS Energy Lett. 8, 4242 (2023)

  14. J. M. Clary, M. Del Ben, R. Sundararaman and D. Vigil-Fowler, “Impact of solvation on the GW quasiparticle spectra of molecules”, J. Appl. Phys. 134, 085001 (2023)

  15. P. Prabhune, Y. Comlek, A. Shandilya, R. Sundararaman, L. S. Schadler, L. C. Brinson and W. Chen, “Design of Polymer Nanodielectrics for Capacitive Energy Storage”, Nanomater. 13, 2394 (2023)

  16. G. Ramanath, C. Rowe, G. Sharma, V. Venkataramani, J. G. Alauzun, R. Sundararaman, P. Keblinski, D. G. Sangiovanni, P. Eklund and H. Pedersen, “Engineering inorganic interfaces using molecular nanolayers”, Appl. Phys. Lett. 122, 260502 (2023)

  17. M. Woodcox, A. Mahata, A. Hagerstrom, A. Stelson, C. Muzny, R. Sundararaman and K. Schwarz, “Simulating dielectric spectra: A demonstration of the direct electric field method and a new model for the nonlinear dielectric response”, J. Chem. Phys. 158, 124122 (2023)

  18. R. Sundararaman and K. Schwarz, “Solvent effects determine the sign of the charges of maximum entropy and capacitance at silver electrodes”, J. Chem. Phys. 158, 121102 (2023)

  19. H. J. Han, S. Kumar, G. Jin, X. Ji, J. L. Hart, D. J. Hynek, Q. P. Sam, V. Hasse, C. Felser, D. G. Cahill, R. Sundararaman and J. J. Cha, “Topological Metal MoP Nanowire for Interconnect”, Adv. Mater. 35, 2208965 (2023)

  20. P. Gupta, E. Ruzicka, B. C. Benicewicz, R. Sundararaman and L. S. Schadler, “Dielectric Properties of Polymer Nanocomposite Interphases Using Electrostatic Force Microscopy and Machine Learning”, ACS Appl. Electron. Mater. 5, 5, 794 (2023)

  21. M. Zhang, S. Kumar, R. Sundararaman and D. Gall, “Resistivity scaling in CuTi determined from transport measurements and first-principles simulations”, J. Appl. Phys. 133, 045102 (2023)

  22. 2022

  23. S. Kumar, C. Multunas and R. Sundararaman, “Fermi surface anisotropy in plasmonic metals increases the potential for efficient hot carrier extraction”, Phys. Rev. Mater. 6, 125201 (2022) (Preprint: arXiv:2205.05007)

  24. S. Kumar, C. Multunas, B. Defay, D. Gall and R. Sundararaman, “Ultralow electron-surface scattering in nanoscale metals leveraging Fermi-surface anisotropy”, Phys. Rev. Mater. 6, 085002 (2022) (Preprint: arXiv:2204.13458)

  25. Y. Wang, G. Varnavides, R. Sundararaman, P. Anikeeva, J. Gooth, C. Felser and P. Narang, “Generalized design principles for hydrodynamic electron transport in anisotropic metals”, Phys. Rev. Mater. 6, 083802 (2022)

  26. L. Zhang, J. Jiang, C. Multunas, C. Ming, Z. Chen, Y. Hu, Z. Lu, S. Pendse, R. Jia, M. Chandra, Y. Sun, T. Lu, Y. Ping, R. Sundararaman and J. Shi, “Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix”, Nat. Photonics 16, 529 (2022)

  27. R. Sundararaman, D. Vigil-Fowler and K. Schwarz, “Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface”, Chem. Rev. 122, 10651 (2022)

  28. A. Goudarzi, S. Behpour, R. Sundararaman, O. N. Garcia and Y. Rostovtsev, “Trap Dynamics of Hot Electrons in Metal-Insulator-Metal Plasmonic structures for ultra-fast optoelectronics”, J. Appl. Phys. 131, 194501 (2022)

  29. A. Habib, J. Xu, Y. Ping and R. Sundararaman, “Electric fields and substrates dramatically accelerate spin relaxation in graphene”, Phys. Rev. B 105, 115122 (2022) (Preprint: arXiv:2012.11550)

  30. H. M. Le, S. Kumar, N. May, E. Martinez-Baez, R. Sundararaman, B. Krishnamoorthy and A. E. Clark, “Behavior of Linear and Nonlinear Dimensionality Reduction for Collective Variable Identification of Small Molecule Solution-Phase Reactions”, J. Chem. Theory Comput. 18, 1286 (2022)

  31. A. Shandilya, K. Schwarz and R. Sundararaman, “Interfacial water asymmetry at ideal electrochemical interfaces”, J. Chem. Phys. 156, 014705 (2022) (Preprint: arXiv:2203.04914)

  32. 2021

  33. J. Xu, A. Habib, R. Sundararaman and Y. Ping, “Ab initio ultrafast spin dynamics in solids”, Phys. Rev. B 104, 184418 (2021) (Preprint: arXiv:2012.08711)

  34. J. Xu, H. Takenaka, A. Habib, R. Sundararaman and Y. Ping, “Giant Spin Lifetime Anisotropy and Spin-Valley Locking in Silicene and Germanene from First-Principles Density-Matrix Dynamics”, Nano Lett. 21, 9594 (2021) (Preprint: arXiv:2110.01128)

  35. D. Gall, J. J. Cha, Z. Chen, H.-J. Han, C. Hinkle, J. A. Robinson, R. Sundararaman and R. Torsi, “Materials for interconnects”, MRS Bulletin 46, 959 (2021)

  36. S. Kumar, A. Habib and R. Sundararaman, “Plasmonic hot carriers scratch the surface”, Trends Chem. 3, 902 (2021)

  37. J. K. Nangoi, S. Karkare, R. Sundararaman, H. A. Padmore and T. A. Arias, “The importance of bulk excitations and coherent electron-photon-phonon scattering in photoemission from PbTe(111): Ab initio theory with experimental comparisons”, Phys. Rev. B 104, 115132 (2021) (Preprint: arXiv:2006.11924)

  38. M. Zhang, S. Kumar, R. Sundararaman, and D. Gall, “Resistivity scaling in epitaxial MAX-phase Ti4SiC3(0001) layers”, J. Appl. Phys. 130, 034302 (2021)

  39. J. A. Tomko, S. Kumar, R. Sundararaman, and P. E. Hopkins, “Temperature dependent electron–phonon coupling of Au resolved via lattice dynamics measured with sub-picosecond infrared pulses”, J. Appl. Phys. 129, 193104 (2021)

  40. N. S. Sitaraman, M. M. Kelley, R. D. Porter, M. U. Liepe, T. A. Arias, J. Carlson, A. R. Pack, M. K. Transtrum and R. Sundararaman, “Effect of the density of states at the Fermi level on defect free energies and superconductivity: A case study of Nb3Sn”, Phys. Rev. B 103, 115106 (2021)

  41. P. Gupta, L. S. Schadler and R. Sundararaman, “Dielectric properties of polymer nanocomposite interphases from electrostatic force microscopy using machine learning”, Mater. Charact. 173, 110909 (2021)

  42. L. Chen, S. Kumar, M. Yahagi, D. Ando, Y. Sutou, D. Gall, R. Sundararaman and J. Koike, “Interdiffusion reliability and resistivity scaling of intermetallic compounds as advanced interconnect materials”, J. Appl. Phys. 129, 035301 (2021)

  43. A. M. Maldonado, S. Hagiwara, T. H. Choi, F. Eckert, K. Schwarz, R. Sundararaman, M. Otani and J. A. Keith, “Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms”, J. Phys. Chem. A 125, 154 (2021)

  44. K. Schwarz, M. C. Groenenboom, T. P. Moffat, R. Sundararaman and J. Vinson, “Resolving the Geometry/Charge Puzzle of the c(2x2)-Cl Cu(100) Electrode”, J. Phys. Chem. Lett. 12, 440 (2021)

  45. 2020

  46. A. Habib, H. Vijayamohanan, C. K. Ullal and R. Sundararaman, “Coupled Electromagnetic and Reaction Kinetics Simulation of Super-Resolution Interference Lithography”, J. Phys. Chem. B 124, 7717 (2020)

  47. G. Tagliabue, J. S. DuChene, M. Abdellah, A. Habib, D. J. Gosztola, Y. Hattori, W.-H. Cheng, K. Zheng, S. E. Canton, R. Sundararaman, J. Sa and H. A. Atwater, “Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures”, Nat.Mater. 19, 1312 (2020) (Preprint: arXiv:1810.04238)

  48. R. Sundararaman, T. Christensen, Y. Ping, N. Rivera, J. D. Joannopoulos, M. Soljacic and P. Narang, “Plasmonics in argentene”, Phys. Rev. Mater. 4, 074011 (2020) (Preprint: arXiv:1806.02672)

  49. J. Xu, A. Habib, S. Kumar, F. Wu, R. Sundararaman and Y. Ping, “Spin-phonon relaxation from a universal ab initio density-matrix approach”, Nat.Commun. 11, 2780 (2020) (Preprint: arXiv:1910.14198)

  50. K. Schwarz and R. Sundararaman, “The electrochemical interface in first-principles calculations”, Surf. Sci. Rep. 75, 100492 (2020)

  51. L. S. Schadler, L. C. Brinson, W. Chen, R. Sundararaman, P. Gupta, P. Prabhune, A. Iyer, Y. Wang and A. Shandilya, “A perspective on the data-driven design of polymer nanodielectrics”, J. Phys. D: Appl. Phys. 53, 333001 (2020)

  52. G. Tagliabue, J. S. DuChene, A. Habib, R. Sundararaman and H. A. Atwater, “Hot Hole versus Hot Electron Transport at Copper/GaN Heterojunction Interfaces”, ACS Nano 14, 5788 (2020)

  53. Y. Hu, F. Florio, Z. Chen, W. A. Phelan, M. A. Siegler, Z. Zhou, Y. Guo, R. Hawks, J. Jiang, J. Feng, L. Zhang, B. Wang, Y. Wang, D. Gall, E. F. Palermo, Z. Lu, X. Sun, T.-M. Lu, H. Zhou, Y. Ren, E. Wertz, R. Sundararaman and J. Shi, “A chiral switchable photovoltaic ferroelectric 1D perovskite”, Sci. Adv. 6, eaay4213 (2020)

  54. D. Wang and R. Sundararaman, “Layer dependence of defect charge transition levels in two-dimensional materials”, Phys. Rev. B 101, 054103 (2020)

  55. A. Shandilya, L. S. Schadler and R. Sundararaman, “First-principles identification of localized trap states in polymer nanocomposite interfaces”, J. Mater. Research 35, 931 (2020)

  56. 2019

  57. A. A. Karanastasis, G. S. Kenath, R. Sundararaman and C. K. Ullal, “Quantification of functional crosslinker reaction kinetics via super-resolution microscopy of swollen microgels”, Soft Matter 15, 9336 (2019)

  58. D. Wang and R. Sundararaman, “Substrate effects on charged defects in two-dimensional materials”, Phys. Rev. Mater. 3, 083803 (2019) (Preprint: arXiv:1908.05208)

  59. S. Kassavetis, B. D. Ozsdolay, N. Kalfagiannis, A. Habib, J.-H. Tortai, S. Kerdsongpanya, R. Sundararaman, M. Stchakovsky, D. V. Bellas, D. Gall and P. Patsalas, “Near-Zero Negative Real Permittivity in Far Ultraviolet: Extending Plasmonics and Photonics with B1-MoNx”, J. Phys. Chem. C 123, 21120 (2019)

  60. A. S. Jermyn, G. Tagliabue, H. A. Atwater, W. A. Goddard III, P. Narang and R. Sundararaman, “Transport of hot carriers in plasmonic nanostructures”, Phys. Rev. Mater. 3, 075201 (2019) (Preprint: arXiv:1707.07060)

  61. M. Chandra, G. Kataria, D. Sahdev and R. Sundararaman, “Hydrodynamic and ballistic AC transport in two-dimensional Fermi liquids”, Phys. Rev. B 99, 165409 (2019) (Preprint: arXiv:1803.10037)

  62. M.-N. Su, C. Ciccarino, S. Kumar, P. Dongare, S. A. H. Jebeli, D. Renard, Y. Zhang, B. Ostovar, W.-S. Chang, P. Nordlander, N. J. Halas, R. Sundararaman, P. Narang, and S. Link, “Ultrafast Electron Dynamics in Single Aluminum Nanostructures”, Nano Lett. 19, 3091 (2019)

  63. C. K. Ullal, J. Shi and R. Sundararaman, “Electron mobility in graphene without invoking the Dirac equation”, Am. J. Phys. 87, 291 (2019) (Preprint: arXiv:1806.10027)

  64. M. E. Trusheim, N. H. Wan, K. C. Chen, C. J. Ciccarino, J. Flick, R. Sundararaman, G. Malladi, E. Bersin, M. Walsh, B. Lienhard, H. Bakhru, P. Narang, and D. Englund, “Lead-related quantum emitters in diamond”, Phys. Rev. B 99, 075430 (2019)

  65. 2018

  66. J. Coulter, R. Sundararaman and P. Narang, “Microscopic origins of hydrodynamic transport in the type-II Weyl semimetal WP2”, Phys. Rev. B 98, 115130 (2018)

  67. G. Tagliabue, A. S. Jermyn, R. Sundararaman, A. J. Welch, J. S. DuChene, R. Pala, A. R. Davoyan, P. Narang and H. A. Atwater, “Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices”, Nat.Commun. 9, 3394 (2018)

  68. C. J. Ciccarino, T. Christensen, R. Sundararaman and P. Narang, “Dynamics and Spin-Valley Locking Effects in Monolayer Transition Metal Dichalcogenides”, Nano Lett. 18, 5709 (2018)

  69. M. C. Figueiredo, D. Hiltrop, R. Sundararaman, K. A. Schwarz and M. T. M. Koper, “Absence of diffuse double layer effect on the vibrational properties and oxidation of chemisorbed carbon monoxide on a Pt(111) electrode”, Electrochim. Acta 281, 127 (2018)

  70. A. Habib, F. Florio and R. Sundararaman, “Hot carrier dynamics in plasmonic transition metal nitrides”, J. Opt. 20, 064001 (2018) (Preprint: arXiv:1802.00727)

  71. T. Zhou, P. Zheng, S. C. Pandey, R. Sundararaman and D. Gall, “The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges”, J. Appl. Phys. 123, 155107 (2018)

  72. R. Sundararaman, K. Letchworth Weaver and K. A. Schwarz, “Improving Accuracy of Electrochemical Capacitance and Solvation Energetics in First-Principles Calculations”, J. Chem. Phys. 148, 144105 (2018) (Preprint: arXiv:1801.07705)

  73. F. Florio, G. Sinha and R. Sundararaman, “Designing High-Accuracy Permanent Magnets for Low-Power Magnetic Resonance Imaging”, IEEE Trans. Magn. 54, 1 (2018)

  74. G. T. Papadakis, P. Narang, R. Sundararaman, N. Rivera, H. Buljan, N. Engheta and M. Soljacic, “Ultra-light Å-scale Optimal Optical Reflectors”, ACS Photonics 5, 384 (2018) (Preprint: arXiv:1707.06717)

  75. 2017

  76. F. Wu, A. Galatas, R. Sundararaman, D. Rocca and Y. Ping, “First-principles engineering of charged defects for two-dimensional quantum technologies”, Phys. Rev. Mater. 1, 071001(R) (2017) (Preprint: arXiv:1710.00257)

  77. O. Lozan, R. Sundararaman, B. Ea-Kim, J.-M. Rampnoux, P. Narang, S. Dilhaire and P. Lalanne, “Increased rise time of electron temperature during adiabatic plasmon focusing”, Nat.Commun. 8, 1656 (2017)

  78. R. Sundararaman, K. Letchworth-Weaver, K. A. Schwarz, D. Gunceler, Y. Ozhabes and T.A. Arias, “JDFTx: software for joint density-functional theory”, SoftwareX 6, 278 (2017) (Preprint: arXiv:1708.03621)

  79. B. de Nijs, F. Benz, S. J. Barrow, D. O. Sigle, R. Chikkaraddy, A. Palma, C. Carnegie, M. Kamp, R. Sundararaman, P. Narang, O. A. Scherman and J. J. Baumberg, “Plasmonic tunnel junctions for single-molecule redox chemistry”, Nat.Commun. 8, 998 (2017)

  80. R. Sundararaman, M. C. Figueiredo, M. T. M. Koper and K. A. Schwarz, “Electrochemical Capacitance of CO-terminated Pt(111) is Dominated by CO-Solvent Gap”, J. Phys. Chem. Lett. 8, 5344 (2017) (Preprint: arXiv:1709.09210)

  81. L. Blumenthal, J. M. Kahk, R. Sundararaman, P. Tangney and J. Lischner, “Energy level alignment at semiconductor-water interfaces from atomistic and continuum solvation models”, RSC Advances 7, 43660 (2017)

  82. S. Choudhury, Z. Tu, S. Stalin, D. Vu, K. Fawole, D. Gunceler, R. Sundararaman and L. Archer, “Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport”, Angew. Chem. Int. Ed. 56, 13070 (2017)

  83. E. Cortes, W. Xie, J. Cambiasso, A. Jermyn, R. Sundararaman, P. Narang, S. Schlucker and S. A. Maier, “Plasmonic hot electron transport drives nano-localized chemistry”, Nat.Commun. 8, 14880 (2017) (Preprint: arXiv:1607.05657)

  84. P. Narang, L. Zhao, S. Claybrook and R. Sundararaman, “Effects of Interlayer Coupling on Hot Carrier Dynamics in Graphene-Derived van der Waals Heterostructures”, Adv. Opt. Mater. 5, 1600914 (2017) (Preprint: arXiv:1612.08196)

  85. R. Sundararaman, W. A. Goddard III and T. A. Arias, “Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry”, J. Chem. Phys. 146, 114104 (2017) (Preprint: arXiv:1701.04490)

  86. R. Sundararaman and Y. Ping, “First-principles electrostatic potentials for reliable alignment at interfaces and defects”, J. Chem. Phys. 146, 104109 (2017) (Preprint: arXiv:1612.01671)

  87. R. Sundararaman and K. Schwarz, “Evaluating continuum solvation models for the electrode-electrolyte interface: Challenges and strategies for improvement”, J. Chem. Phys. 146, 084111 (2017) (Preprint: arXiv:1612.00931)

  88. A. Brown, R. Sundararaman, P. Narang, A. M. Schwartzberg, W.A. Goddard III and H.A. Atwater, “Experimental and Ab initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles”, Phys. Rev. Lett. 118, 087401 (2017) (Preprint: arXiv:1608.03309)

  89. 2016

  90. A. Brown, R. Sundararaman, P. Narang, W.A. Goddard III and H.A. Atwater, “Ab initio phonon coupling and optical response of hot electrons in plasmonic metals”, Phys. Rev. B 91, 075120 (2016) (Preprint: arXiv:1602.00625)

  91. P. Narang, R. Sundararaman, A. Jermyn, W.A. Goddard III and H.A. Atwater, “Cubic Nonlinearity Driven Up-Conversion in High-Field Plasmonic Hot Carrier Systems”, J. Phys. Chem. C 120, 21056 (2016)

  92. K. Schwarz, B. Xu, Y. Yan and R. Sundararaman, “Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges”, Phys. Chem. Chem. Phys. 18, 16216 (2016)

  93. P. Narang, R. Sundararaman and H.A. Atwater, “Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion”, Nanophotonics 5, 96 (2016)

  94. H. Xiao, T. Cheng, W.A. Goddard III and R. Sundararaman, “Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111)”, J. Am. Chem. Soc. 138, 483 (2016)

  95. A. Brown, R. Sundararaman, P. Narang, W.A. Goddard III and H.A. Atwater, “Non-Radiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces and Geometry”, ACS Nano, 10, 957 (2016)

  96. 2015

  97. Y. Ping, R. Sundararaman and W.A. Goddard III, “Solvation effects on the band edge positions of photocatalysts from first principles”, Phys. Chem. Chem. Phys., 17 30499 (2015)

  98. K.A. Schwarz, R. Sundararaman, T.P. Moffat and T. Allison, “Formic acid oxidation on platinum: a simple mechanistic study”, Phys. Chem. Chem. Phys., 17 20805 (2015)

  99. K.A. Schwarz, R. Sundararaman and T.A. Arias, “Computationally efficient dielectric calculations of molecular crystals”, J. Chem. Phys. 142, 214101 (2015)

  100. R. Sundararaman and W.A. Goddard III, “The charge-asymmetric nonlocally-determined local-electric (CANDLE) solvation model”, J. Chem. Phys. 142, 064107 (2015) (Preprint: arXiv:1410.2922)

  101. R. Sundararaman, K.A. Schwarz, K. Letchworth-Weaver and T.A. Arias, “Spicing up continuum solvation models with SaLSA: The spherically-averaged liquid susceptibility ansatz”, J. Chem. Phys. 142, 054102 (2015) (Preprint: arXiv:1410.2273)

  102. 2014

  103. R. Sundararaman, P. Narang, A. Jermyn, W.A. Goddard III and H.A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay”, Nat.Commun. 5, 5788 (2014)

  104. R. Sundararaman, D. Gunceler and T.A. Arias, “Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models”, J. Chem. Phys. 141, 134105 (2014) (Preprint: arXiv:1407.4011)

  105. R. Sundararaman, K. Letchworth-Weaver and T.A. Arias, “A recipe for free-energy functionals of polarizable molecular fluids”, J. Chem. Phys. 140, 144504 (2014) (Preprint: arXiv:1402.3237)

  106. M.E. Holtz, Y. Yu, D. Gunceler, J. Gao, R. Sundararaman, K.A Schwarz, T.A. Arias, H.D. Abruna and D.A. Muller, “Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte”, Nano Lett. 14, 1453 (2014) (Preprint: arXiv:1311.6490)

  107. K. Matthew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias and R. Hennig, “Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways”, J. Chem. Phys. 140, 084106 (2014)

  108. R. Sundararaman and T.A. Arias, “Efficient classical density-functional theories of rigid-molecular fluids and a simplified free energy functional for liquid water”, Comp. Phys. Comm. 185, 818 (2014) (Preprint: arXiv:1302.0026)

  109. 2013

  110. R. Sundararaman and T.A. Arias, “Ideal regularization of the Coulomb singularity in exact exchange by Wigner-Seitz truncated interactions: towards chemical accuracy in non-trivial systems”, Phys. Rev. B 87, 165122 (2013) (Preprint: arXiv:1302.6204)

  111. D. Gunceler, K. Letchworth-Weaver, R. Sundararaman, K.A. Schwarz and T.A. Arias, “The importance of nonlinear fluid response in joint density-functional theory studies of battery systems”, Mod. Sim. Mat. Sci. Eng. 21, 074005 (2013) (Preprint: arXiv:1301.6189)

  112. 2012

  113. R. Sundararaman, K. Letchworth-Weaver and T.A. Arias, “A computationally efficacious free-energy functional for studies of inhomogeneous liquid water”, J. Chem. Phys. 137, 044107 (2012) (Preprint: arXiv:1112.1442)

  114. K.A. Schwarz, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias and R.G. Hennig, “Framework for solvation in quantum Monte Carlo”, Phys. Rev. B 85, 201102(R) (2012) (Preprint: arXiv:1204.6330)

  115. M. Kim, R. Sundararaman, S. Tiwari and J.-W. Lee, “Charge Trapping Devices Using a Bilayer Oxide Structure”, J. Nanosci. and Nanotech. 12, 423 (2012)

  116. Till 2011

  117. J.M. Rubin, R. Sundararaman, M. Kim and S. Tiwari, “A Low-voltage Torsion Nanorelay”, IEEE Electron Device Letters 32, 414 (2011)

  118. R. Sundararaman and S. Tiwari, “A universal semiempirical model for the Fowler-Nordheim programming of charge trapping devices”, Appl. Phys. Lett. 96, 023502 (2010)

  119. G. Sinha, R. Sundararaman, and G. Singh, “Design Concepts of Optimized MRI Magnet”, IEEE Trans. Magn., 44, 2351 (2008)

Invited talks

  1. “Discovering materials to efficiently connect nanoscale transistors in future chips”, UPWARDS Lightning Talk, [online](https://youtu.be/mjRVcas1BIU) (March 7, 2024)

  2. “Nanoscale interconnects for future semiconductors from first principles”, APS March Meeting, Minneapolis, MN (March 7, 2024)

  3. “Enhancing electrochemical solvation with molecular dynamics and machine learning”, Sanibel Symposium, St. Augustine, FL (February 28, 2024)

  4. “First-principles materials design for nanoscale interconnects and spin transport”, University of California, Riverside, CA (November 8, 2023)

  5. “First-principles materials design for nanoscale interconnects and spin transport”, National Institute of Standards and Technology, Gaitehrsberg, MD (September 12, 2023)

  6. “Improving electrolyte solvation models for first-principles electrochemistry”, ACS National Meeting, San Fransisco, CA (August 16, 2023)

  7. “Density-functional approximations: from electrons to classical fluids”, and “Advancing solvation models from implicit to classical DFT methods”, CCMS Summer Institute Lectures, Lawrence Livermore National Laboratory (August 1, 2023)

  8. “Improving solvation models with molecular dynamics and machine learning”, Computational Materials Chemistry workshop, Telluride (July 19, 2023)

  9. “Directional metals for nanoscale interconnects and hot carrier extraction”, Massachusetts Institute of Technology, Boston (May 31, 2023)

  10. “First-principles electrochemistry beyond grand-canonical density-functional theory”, 243rd ECS meeting, Boston (May 30, 2023)

  11. “First-principles electrochemistry beyond grand-canonical density-functional theory”, Louisiana State University, Baton Rouge (Oct 7, 2022)

  12. Ab initio quantum ultrafast dynamics of electrons in materials”, MRS Spring Meeting 2022, Honolulu (May 12, 2022)

  13. “Directional conductors for nanoscale interconnects”, Semiconductor Research Corporation Workshop, online (Feb 16, 2022)

  14. “Towards first-principles electrochemistry with grand-canonical joint density-functional theory”, ACS National Meeting, online (August 25, 2021)

  15. “Towards first-principles electrochemistry with grand-canonical joint density-functional theory”, University of Colorado, Boulder (April 27, 2021)

  16. “First-principles electrochemistry with grand-canonical DFT and continuum-solvation methods”, American Physical Society March Meeting, online (March 19, 2021)

  17. Ab initio multiphysics: materials combining quantum and classical simulation techniques”, RISE Symposium, University of Puerto Rico, Cayey (Feb 1 2020)

  18. “Leaving the collective: plasmonics from a hot electron's point of view”, Stevens Institute of Technology, Hoboken, New Jersey (Oct 25, 2019)

  19. “Grand-canonical continuum solvation for first-principles electrochemistry”, Computational Materials Chemistry workshop, Telluride (July 16, 2019)

  20. “Ultrafast dynamics and transport of plasmonic hot carriers”, University of California, Santa Cruz (May 17, 2019)

  21. “First-principles design of quantum defects in 2D materials”, American Vacuum Society Meeting, General Electric Global Research, Niskayuna, New York (May 7, 2019)

  22. “Functional approximations for density-functional theory”, University of Colorado, Boulder (May 1, 2019)

  23. “First-principles electrochemistry with grand-canonical DFT and continuum-solvation methods”, National Renewable Energy Laboratory, Golden (June 12, 2018)

  24. “First-principles electrochemistry with grand-canonical DFT and continuum-solvation methods”, University of Colorado, Boulder (June 11, 2018)

  25. “Designing nano-materials for plasmonic hot carrier applications using ab initio multi-physics”, CECAM Workshop on Charge carrier dynamics in nanostructures: optoelectronic and photo-stimulated processes, Bremen, Germany (October 12, 2017)

  26. “First-principles methods for modeling electrochemical processes”, 254th ACS National Meeting, Washington DC (August 21, 2017)

  27. “Plasmonic hot carriers: Towards material design”, ACS 2017 Middle Atlantic Regional Meeting, Hershey, Pennsylvania (June 5, 2017)

  28. “Material design for plasmonic and hot-carrier devices”, Pacific Rim Conference on Ceramic and Glass Technology (PACRIM 12), Waikoloa, Hawaii (May 23, 2017)

  29. “After the plasmon: designing materials to exploit non-equilibrium carriers”, MRS Spring Meeting 2017, Phoenix (April 20, 2017)

  30. “Leaving the collective: plasmonics from a hot electron's point of view”, International Center for Theoretical Sciences, Bengaluru, India (Dec 9, 2016)

  31. “Density-functional methods for electrochemistry and hot carrier dynamics”, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India (Dec 5, 2016)

  32. “Leaving the collective: plasmonics from a hot electron's point of view”, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India (Nov 30, 2016)

  33. “Density-functional methods for electrochemistry and hot carrier dynamics”, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, India (Nov 28, 2016)

  34. “Leaving the collective: plasmonics from a hot electron's point of view”, Tata Institute of Fundamental Research, Mumbai, India (Nov 21, 2016)

  35. “Plasmonic hot carrier dynamics: electronic structure perspectives”, Workshop on physics of light-matter interactions and excited state dynamics, NG Next Basic Research Laboratory, Northrop Grumman corporation, Redondo Beach (Oct 26, 2016)

  36. “Electron interactions with liquids and light in nano-engineered energy conversion systems”, Center for Nanoscale Materials, Argonne National Laboratory (Feb 24, 2016)

  37. “Electron interactions with liquids and light in nano-engineered energy conversion systems”, Department of Materials Science, University of Wisconsin, Madison (Feb 22, 2016)

  38. “First principles electrochemistry using joint density functional theory and continuum solvation methods”, CAMS workshop on “Enabling Methods for Materials Innovation from Quantum to Mesoscale”, University of Florida, Gainesville (June 4, 2015)

  39. “Liquids, electrochemistry and plasmonics: from electronic structure to properties at the mesoscale”, Department of Materials Science and Engineering, Penn State, University Park (April 14, 2015)

  40. “Continuum solvation from joint density functional theory”, Chemistry department, University of California, Riverside (Nov 10, 2014)

  41. “Nonlocal polarizable continuum models from joint density functional theory”, 25th annual workshop on Electronic Structure methods, College of William and Mary, Williamsburg (June 14, 2013)

  42. “Accurate free energy functionals of liquid water for the Joint Density Functional description of solvated electronic systems”, Theoretical chemistry division, Bhabha atomic research center, Mumbai, India (Aug 8, 2011)