MTLE-6120: Advanced Electronic Properties of Materials

» Instructor: Ravishankar Sundararaman (sundar@rpi.edu)

» Lectures: Tuesdays and Fridays, 10 - 11:50 am

> Location: WebEx

» Website: http://abinitiomp.org/teaching/mtle6120

» Office hours: Thursdays 5-6 pm at
http://rensselaer.webex.com/meet/sundar

> Primary text:

» Principles of Electronic Materials and Devices by S.0. Kasap
> Background reading (as needed):

» Introduction to Solid State Physics by C. Kittel
» Introduction to Quantum Mechanics by D.J. Griffiths
» Introduction to Electrodynamics by D.J. Griffiths

> Please fill out brief survey/quiz on background and interests
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Topics (1/3): Theoretical background

Maxwell’s equations in materials

Classical Drude theory of conduction

Basic quantum mechanics

Atoms, many-electron theories and the periodic table

Quantum kinetics: Fermi's Golden rule
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Band theory of solids
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Topics (2/3): Material properties
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Fermi theory of metals

Electron transport: phonons and electron-phonon scattering

Intrinsic and extrinsic semiconductors

Insulating materials: dielectrics, ferroelectrics, piezoelectrics etc.
Magnetism: dia-, para- and ferro-magnetism, hysteresis

Superconductivity

Optical properties: absorption, emission, luminescence, fluorescence, lasing

Low-dimensional materials
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Topics (3/3): Interface properties

Metal-vacuum interfaces: thermionic and field emission
Metal-metal junctions: Seebeck effect, thermocouples, Peltier effect
Metal-semiconductor Schottky junctions

Semiconductor p-n junction diodes; LEDs, lasers and photovoltaics
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Semiconductor transistors for logic and memory
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Learning outcomes

» Understand how the physics of electrons in materials results in a variety of
electronic, magnetic and optical properties of materials

» Understand how these properties are exploited and optimized for in
technological applications

» Navigate literature in active areas of research in electronic, magnetic or
optical materials
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Assessment

> 20%: Weekly quizzes in Friday classes based on most-recent lectures and
homework; one lowest score not counted

» 20%: In-class midterm examination on Mar 3, which along with all
previous homeworks will be used to provide you with performance feedback
by 3 pm on Mar 3

» 40%: Final examination on the penultimate day of classes (Apr 21)

» 10%: Short oral presentation on an area of active research in electronic,
optical or magnetic materials in the last class (April 25)

» 10%: Participation in class by asking questions and contributing to
discussions
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Academic integrity

Student-teacher relationships are built on trust. For example, students must trust
that teachers have made appropriate decisions about the structure and content
of the courses they teach, and teachers must trust that the assignments that stu-
dents turn in are their own. Acts that violate this trust undermine the educational
process. The Rensselaer Handbook of Student Rights and Responsibilities and
The Graduate Student Supplement define various forms of Academic Dishonesty
and you should make yourself familiar with these.

» Homework: discussions and team work encouraged (not for grade)
» Quizzes / exams: books and printed notes allowed; no discussions
» First violation: zero score on that assignment

» Second violation: F grade on course

If you have any question concerning this policy, please ask for clarification.
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Fastest advancing technologies

Computer processors
Magnetic storage (hard drives)
Solid-state storage (flash memory)

Optical communications
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Photovoltaics (solar cells)
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Moore's law: computation rate per cost
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Moore's law: storage aereal density

HDD/flash areal density perspective
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Keck's law: fiber optic communication rate
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Photovoltaic efficiencies
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Goals of this course

» Physical laws — material properties
» Material properties — device functionality

» Device functionality — technologies (briefly)
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