MTLE-6120: Advanced Electronic Properties of Materials

Classical Drude theory of conduction

Contents:

- \triangleright Drude model derivation of free-electron conductivity
- \triangleright Scattering time estimates and Matthiessen's rule
- \blacktriangleright Mobility and Hall coefficients
- \triangleright Frequency-dependent conductivity of free-electron metals

Reading:

 \blacktriangleright Kasap: 2.1 - 2.3, 2.5

1

Ohm's law

 \triangleright Local Ohm's law: current density driven by electric field

$$
\vec{j}=\sigma\vec{E}
$$

- **In Current in a sample of cross section** A is $I = jA$
- \blacktriangleright Voltage drop across a sample of length L is $V = EL$
- \triangleright Ohm's law defines resistance

$$
R \equiv \frac{V}{I} = \frac{EL}{jA} = \sigma^{-1} \frac{L}{A}
$$

 \triangleright Units: Resistance in Ω , resistivity $\rho = \sigma^{-1}$ in Ω m, conductivity σ in $(\Omega m)^{-1}$

Typical values at 293 K

Note $1/T = 0.0034$ K $^{-1}$ at 293 K \Rightarrow approximately $\rho \propto T$ for the best conducting metals.

Temperature dependence

- \blacktriangleright Linear at higher temperatures
- Residual resistivity (constant at low T) due to defects and impurities

Drude model setup

- \triangleright Fixed nuclei (positive ion cores) + gas of moving electrons
- Electrons move freely with random velocities
- Electrons periodically scatter which randomizes velocity again
- Average time between collisions: mean free time τ
- \blacktriangleright Average distance travelled between collisions: mean free path λ
- \blacktriangleright In zero field, drift velocity (averaged over all electrons)

 $\vec{v}_d \equiv \langle \vec{v} \rangle = 0$

but electrons are not stationary:

$$
\langle v^2 \rangle = u^2
$$

 \blacktriangleright Current density carried by electrons:

$$
\vec{j}=n(-e)\vec{v}_d=0
$$

where n is number density of electrons

Apply electric field

 \cdot

- ► Electron starts at past time $t = -t_0$ with random velocity \vec{v}_0
- Force on electron is $\vec{F} = (-e)\vec{E}$
- \triangleright Solve equation of motion till present time $t = 0$:

$$
m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = (-e)\vec{E}
$$

$$
\vec{v} = \vec{v}_0 - \frac{e\vec{E}t_0}{m}
$$

- \triangleright Need to average over all electrons
- ► Probability that electron started at $-t_0$ and did not scatter till $t = 0$ is

$$
P(t_0) \propto e^{-t_0/\tau} = e^{-t_0/\tau}/\tau
$$
 (normalized)

 \blacktriangleright Probability distribution of initial velocities satisfies

$$
\int d\vec{v}_0 P(\vec{v}_0) = 1
$$
 (normalized)

$$
\int d\vec{v}_0 P(\vec{v}_0) \vec{v}_0 = 0
$$
 (random)
(random)
Rensselaen

Drift velocity in electric field

 \blacktriangleright Drift velocity is the average velocity of all electrons

$$
\vec{v}_d \equiv \langle \vec{v} \rangle
$$
\n
$$
\equiv \int d\vec{v}_0 P(\vec{v}_0) \int_0^\infty dt_0 P(t_0) \left(\vec{v}_0 - \frac{e\vec{E}t_0}{m} \right)
$$
\n
$$
= \int d\vec{v}_0 P(\vec{v}_0) \vec{v}_0 \int_0^\infty dt_0 P(t_0) - \int d\vec{v}_0 P(\vec{v}_0) \int_0^\infty dt_0 P(t_0) \frac{e\vec{E}t_0}{m}
$$
\n
$$
= 0 \cdot 1 - 1 \cdot \int_0^\infty dt_0 \frac{e^{-t_0/\tau}}{\tau} \frac{e\vec{E}t_0}{m}
$$
\n
$$
= \frac{-e\vec{E}}{m\tau} \cdot \int_0^\infty t_0 dt_0 e^{-t_0/\tau}
$$
\n
$$
= \frac{-e\vec{E}}{m\tau} \cdot \tau^2 \qquad \left(\int_0^\infty x^n dx e^{-ax} = \frac{n!}{a^{n+1}} \right)
$$
\n
$$
= \frac{-e\vec{E}\tau}{m}
$$

7

Drude conductivity

 \blacktriangleright Current density carried by electrons:

$$
\vec{j} = n(-e)\vec{v}_d = n(-e)\left(-\frac{e\vec{E}\tau}{m}\right) = \frac{ne^2\tau}{m}\vec{E}
$$

 \triangleright Which is exactly the local version of Ohm's law with conductivity

$$
\sigma = \frac{n e^2 \tau}{m}
$$

- \blacktriangleright For a given metal, n is determined by number density of atoms and number of 'free' electrons per atom
- \blacktriangleright e and m are fundamental constants
- **P** Predictions of the model come down to τ (discussed next)
- **In** Later: quantum mechanics changes τ , but above classical derivation remains essentially correct!

Classical model for scattering

- \triangleright Electrons scatter against ions (nuclei $+$ fixed core electrons)
- Scattering cross-section σ_{ion} : projected area within which electron would be scattered
- \triangleright WLOG assume electron travelling along z
- \blacktriangleright Probability of scattering between z and dz is

$$
-dP(z) = P(z) \underbrace{\sigma_{\text{ion}}dz}_{dV_{\text{eff}}} n_{\text{ion}}
$$

where n_{ion} is number density of ions and dV_{eff} is the volume from which ions can scatter electrons

- ► This yields $P(z) \propto e^{-\sigma_{\text{ion}} n_{\text{ion}} z}$
- $\triangleright \Rightarrow$ Mean free path

$$
\lambda = \frac{1}{n_{\text{ion}} \sigma_{\text{ion}}}
$$

Classical estimate of scattering time

- **From Drude model,** $\tau = \sigma m/(ne^2)$
- \blacktriangleright Experimentally, $\sigma \propto T^{-1} \Rightarrow \tau \propto T^{-1}$
- From classical model, $\tau = \lambda/u$, where u is average electron speed
- \blacktriangleright $\lambda = 1/(n_{\text{ion}} \sigma_{\text{ion}})$ should be T-independent
- ► Kinetic theory: $\frac{1}{2}mu^2 = \frac{3}{2}k_BT \Rightarrow u = \sqrt{3k_BT/m}$
- \blacktriangleright Therefore classical scattering time

$$
\tau = \frac{\lambda}{u} = \frac{1}{n_{\rm ion} \sigma_{\rm ion} \sqrt{3 k_B T/m}} \propto T^{-1/2}
$$

gets the temperature dependence wrong

Comparisons for copper

 \blacktriangleright Experimentally:

$$
\sigma = 6 \times 10^7 \text{ (}\Omega \text{m}\text{)}^{-1} \text{ (at 293 K)}
$$

$$
n = n_{\text{ion}} = \frac{4}{(3.61 \text{ A})^3} = 8.5 \times 10^{28} \text{ m}^{-3}
$$

$$
\tau = \frac{\sigma m}{ne^2} = \frac{6 \times 10^7 \text{ (}\Omega \text{m}\text{)}^{-1} \cdot 9 \times 10^{-31} \text{ kg}}{8.5 \times 10^{28} \text{ m}^{-3} (1.6 \times 10^{-19} \text{ C})^2} = 2.5 \times 10^{-14} \text{ s}
$$

 \blacktriangleright Classical model:

$$
\sigma_{\text{ion}} \sim \pi (1 \text{ Å})^2 \sim 3 \times 10^{-20} \text{ m}^2
$$

\n
$$
\lambda = \frac{1}{n_{\text{ion}} \sigma_{\text{ion}}} \sim \frac{1}{8.5 \times 10^{28} \text{ m}^{-3} \cdot 3 \times 10^{-20} \text{ m}^2} \sim 4 \times 10^{-10} \text{ m}
$$

\n
$$
u = \sqrt{\frac{3k_B T}{m}} = \sqrt{\frac{3 \cdot 1.38 \times 10^{-23} \text{ J/K} \cdot 293 \text{ K}}{9 \times 10^{-31} \text{ kg}}} = 1.2 \times 10^5 \text{ m/s}
$$

\n
$$
\tau = \frac{\lambda}{u} \sim 3 \times 10^{-15} \text{ s}
$$

 \blacktriangleright Need σ_{ion} to be 10x smaller to match experiment

What changes in quantum mechanics?

- 1. Electron velocity in metals is (almost) independent of temperature
	- \blacktriangleright Pauli exclusion principle forces electrons to adopt different velocities
	- 'Relevant' electrons have Fermi velocity v_F (=1.6 \times 10⁶ m/s for copper)
- 2. Electrons don't scatter against ions of the perfect crystal
	- \blacktriangleright Electrons are waves which 'know' where all the ions of the crystal are
	- \blacktriangleright They only scatter when ions deviate from ideal positions!
	- **F** Crude model $\sigma_{\text{ion}} = \pi x^2$ for RMS displacement x
	- \blacktriangleright Thermal displacements $\frac{1}{2}kx^2 = \frac{1}{2}k_BT$

i

I

Prinemial displacements $\frac{1}{2}kx = \frac{1}{2}kBT$
Pring constant $k \sim Ya \sim (120 \text{ GPa})(3.6\text{Å}/\sqrt{2}) \sim 30 \text{ N/m}$

$$
\sigma_{\rm ion} = \frac{\pi k_B T}{k} \sim 4 \times 10^{-22} \text{ m}^2 \text{ (at room } T\text{)}
$$

$$
\tau = \frac{1}{n_{\rm ion} \sigma_{\rm ion} v_F} = \frac{k}{n_{\rm ion} \pi k_B T v_F} \sim 1.7 \times 10^{-14} \ {\rm s \ (at\ room \ } T)
$$

► Correct $1/T$ dependence and magnitude at room T (expt: 2.5×10^{-14} s)!

Matthiessen's rule

- ► Perfect metal: $\tau_T \propto T^{-1}$ due to scattering against thermal vibrations (so far)
- \blacktriangleright Impurity and defect scattering contribute $\tau_I\propto T^0$
- Scattering rates (not times) are additive, so net τ given by

$$
\tau^{-1} = \tau_T^{-1} + \tau_I^{-1} + \cdots
$$

Mobility

 \triangleright Drude conductivity in general

$$
\sigma=\frac{nq^2\tau}{m}=n|q|\mu
$$

where n is the number density of charge carriers q with mobility

$$
\mu=\frac{|q|\tau}{m}
$$

effectively measuring the conductivity per unit (mobile) charge

- In metals, $q = -e$ since charge carried by electrons (so far)
- In semiconductors, additionally $q = +e$ for holes and

 $\sigma = e(n_e\mu_e + n_h\mu_h)$

Semiconductors have typically higher μ , substantially lower n and σ

Hall effect

- Apply magnetic field perpendicular to current: voltage appears in third direction
- \blacktriangleright Hall coefficient defined by

$$
R_H = \frac{E_y}{j_x B_z} = \frac{V_H/W}{I/(Wd)B_z} = \frac{V_H d}{IB_z}
$$

- \triangleright Simple explanation in Drude model
- \blacktriangleright Average driving force on carriers now

$$
\vec{F} = q(\vec{E} + \vec{v_d} \times \vec{B})
$$

$$
= q(E_x \hat{x} - (v_d)_x B_z \hat{y})
$$

- Steady-state current only in \hat{x}
- $\blacktriangleright \Rightarrow E_y = (v_d)_x B_z$ develops to cancel F_y

Hall coefficient in metals

- \blacktriangleright Note $E_y = (v_d)_x B_z$, while $j_x = nq(v_d)_x$
- Eliminate $(v_d)_x$ to get

$$
R_H \equiv \frac{E_y}{j_x B_z} = \frac{1}{nq}
$$

- \triangleright In particular, $q = -e$ for electronic conduction $\Rightarrow R_H = -1/(ne)$
- \blacktriangleright Compare to experimental values:

- ▶ Good agreement for 'free-electron' metals
- \triangleright Wrong sign for some (transition metals)!

Hall coefficient in semiconductors

- \triangleright Remember: conductivities due to electrons and holes add $\sigma = e(n_e \mu_e + n_h \mu_h)$
- Different drift velocities for electrons and holes
- \blacktriangleright For each of electrons and holes
	- **Given driving force** \vec{F} **, drift velocity** $\vec{v}_d = \vec{F} \tau / m$
	- Mobility $\mu \equiv |q|\tau/m$, so $\vec{v}_d = \vec{F}\mu/|q|$
	- \triangleright Driving force $F_y = q(E_y (v_d)_x B_z)$
	- **Corresponding drift velocity** $(v_d)_y = F_y \mu / |q|$
	- \blacktriangleright And corresponding current $j_{y} = nq(v_{d})_{y} = nqF_{y}\mu/|q| = nq^{2}(E_{y} - (v_{d})_{x}B_{z})\mu/|q|$ Substitute $(v_d)_x = (qE_x)\mu/|q|$ to get $j_y = n\mu(|q|E_y - qE_x\mu B_z)$
- \blacktriangleright Net j_y must be zero (that's how we got Hall coefficient before):

$$
0 = n_e \mu_e (eE_y + eE_x \mu_e B_z) + n_h \mu_h (eE_y - eE_x \mu_h B_z)
$$

Hall coefficient in semiconductors (continued)

 \blacktriangleright Net zero j_y yields:

$$
0 = n_e \mu_e (eE_y + eE_x \mu_e B_z) + n_h \mu_h (eE_y - eE_x \mu_h B_z)
$$

= $(n_e \mu_e + n_h \mu_h) E_y + (n_e \mu_e^2 - n_h \mu_h^2) E_x B_z$

$$
\Rightarrow R_H = \frac{E_y}{j_x B_z} = \frac{E_y}{\sigma E_x B_z}
$$

= $-\frac{n_e \mu_e^2 - n_h \mu_h^2}{(n_e \mu_e + n_h \mu_h)\sigma}$
= $\frac{-n_e \mu_e^2 + n_h \mu_h^2}{e(n_e \mu_e + n_h \mu_h)^2}$

Reduces to metal result if $n_h = 0$

- \triangleright Note holes conrtibute positive coefficient, while electrons negative (not additive like conductivity)
- \blacktriangleright Transition metals can have positive Hall coefficients for the same reason! (Explained later with band structures.)

Frequency-dependent conductivity

- \triangleright So far, we applied fields \vec{E} constant in time
- ► Now consider oscillatory field $\vec{E}(t) = \vec{E}e^{-i\omega t}$ (such as from an EM wave)
- ^I Same Drude model: free electron between collisions etc.
- \triangleright Only change in equation of motion:

$$
\frac{d\vec{v}}{dt} = \frac{q\vec{E}}{m}e^{-i\omega t}
$$
\n
$$
\vec{v}(t) = \vec{v}_0 + \int_{t-t_0}^t dt \frac{q\vec{E}}{m}e^{-i\omega t}
$$
\n
$$
= \vec{v}_0 + \frac{q\vec{E}}{m} \left[\frac{e^{-i\omega t}}{-i\omega} \right]_{t-t_0}^t
$$
\n
$$
= \vec{v}_0 + \frac{q\vec{E}}{m} \cdot \frac{e^{-i\omega(t-t_0)} - e^{-i\omega t}}{i\omega}
$$

Note: must account for t explicitly

Frequency-dependent conductivity: drift velocity

 \blacktriangleright Drift velocity (at $t = 0$) is the average velocity of all electrons

$$
\vec{v}_d(t) \equiv \int d\vec{v}_0 P(\vec{v}_0) \int_0^\infty dt_0 P(t_0) \left(\vec{v}_0 + \frac{q\vec{E}}{m} \cdot \frac{e^{-i\omega(t-t_0)} - e^{-i\omega t}}{i\omega} \right)
$$
\n
$$
= \int_0^\infty dt_0 P(t_0) \frac{q\vec{E}}{m} \frac{e^{-i\omega(t-t_0)} - e^{-i\omega t}}{i\omega}
$$
\n
$$
= \int_0^\infty dt_0 \frac{e^{-t_0/\tau}}{\tau} \frac{q\vec{E}}{m} \frac{e^{i\omega t_0} - 1}{i\omega} e^{-i\omega t}
$$
\n
$$
= \frac{q\vec{E}}{im\omega \tau} \int_0^\infty dt_0 \left(e^{-t_0(1/\tau - i\omega)} - e^{-t_0/\tau} \right) e^{-i\omega t}
$$
\n
$$
= \frac{q\vec{E}}{im\omega \tau} \left(\frac{1}{1/\tau - i\omega} - \tau \right) e^{-i\omega t} \qquad \left(\int_0^\infty x^n dx e^{-ax} = \frac{n!}{a^{n+1}} \right)
$$
\n
$$
= \frac{q\vec{E}}{im\omega \tau} \cdot \frac{1 - (1 - i\omega \tau)}{1/\tau - i\omega} e^{-i\omega t}
$$
\n
$$
= \frac{q\vec{E} \tau}{m} \cdot \frac{1}{1 - i\omega \tau} e^{-i\omega t}
$$
\nRenselaer

Frequency-dependent conductivity: Drude result

• As before,
$$
\vec{j}(t) = nq\vec{v}_d(t)
$$
, which yields conductivity

$$
\sigma(\omega) = \frac{nq^2\tau}{m(1 - i\omega\tau)} = \frac{\sigma(0)}{1 - i\omega\tau}
$$

- \triangleright Same as before, except for factor $(1 i\omega\tau)$ (which \rightarrow 1 for $\omega \rightarrow 0$ as expected)
- \triangleright What does the phase of the complex conductivity mean?
- Current density has a phase lag relative to electric field
- \triangleright When field changes, collisions are needed to change the current, which take average time τ
- \blacktriangleright From constitutive relations discussion, complex dielectric function

$$
\epsilon(\omega) = \epsilon_0 + \frac{i\sigma(\omega)}{\omega} = \epsilon_0 - \frac{nq^2/m}{\omega(\omega + i/\tau)}
$$

Plasma frequency

- \blacktriangleright Displace all electrons by x
- \triangleright Volume xA containing only electrons with charge $-xAne$
- \triangleright Counter charge $+xAne$ on other side due to nuclei
- \blacktriangleright Electric field by Gauss's law:

$$
\vec{E} = \frac{xne}{\epsilon_0}\hat{x}
$$

 \blacktriangleright Equation of motion of electrons:

$$
m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = (-e)E_x = -x\frac{ne^2}{\epsilon_0}
$$

In Harmonic oscillator with frequency ω_p given by

$$
\omega_p^2=\frac{ne^2}{m\epsilon_0}
$$

Drude dielectric function of metals

 \triangleright Simple form in terms of plasma frequency

$$
\epsilon(\omega) = \epsilon_0 - \frac{nq^2/m}{\omega(\omega + i/\tau)} = \epsilon_0 \left(1 - \frac{\omega_p^2}{\omega(\omega + i/\tau)} \right)
$$

For
$$
\omega \ll 1/\tau
$$
,

$$
\epsilon(\omega) \approx \epsilon_0 \left(1 + \frac{i \omega_p^2 \tau}{\omega} \right)
$$

imaginary dielectric, real conductivity (Ohmic regime)

$$
\text{For } 1/\tau \ll \omega < \omega_p,
$$

$$
\epsilon(\omega) \approx \epsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2}\right)
$$

negative dielectric constant (plasmonic regime)

For $\omega > \omega_n$, positive dielectric constant (dielectric regime)

Copper dielectric function

For copper, $\omega_p = 10.8$ eV and $\tau = 25$ fs

► Note 1 eV corresponds to $\omega = 1.52 \times 10^{15}$ s⁻¹ and $\nu = 2.42 \times 10^{14}$ Hz

