Classical Drude theory of conduction

Contents:

- Drude model derivation of free-electron conductivity
- Scattering time estimates and Matthiessen's rule
- Mobility and Hall coefficients
- ▶ Frequency-dependent conductivity of free-electron metals

Reading:

► Kasap: 2.1 - 2.3, 2.5

Ohm's law

▶ Local Ohm's law: current density driven by electric field

$$\vec{j} = \sigma \vec{E}$$

- ▶ Current in a sample of cross section A is I = jA
- ▶ Voltage drop across a sample of length L is V = EL
- ▶ Ohm's law defines resistance

$$R \equiv \frac{V}{I} = \frac{EL}{jA} = \sigma^{-1} \frac{L}{A}$$

▶ Units: Resistance in Ω , resistivity $\rho = \sigma^{-1}$ in Ω m, conductivity σ in $(\Omega m)^{-1}$

Typical values at 293 K

-			
Substance	$\rho \ [\Omega m]$	$\sigma [(\Omega m)^{-1}]$	$\frac{\mathrm{d}\rho}{\rho\mathrm{d}T}$ [K ⁻¹]
Silver	1.59×10^{-8}	6.30×10^{7}	0.0038
Copper	1.68×10^{-8}	5.96×10^{7}	0.0039
Tungsten	5.6×10^{-8}	1.79×10^{7}	0.0045
Lead	2.2×10^{-7}	4.55×10^{6}	0.0039
Titanium	4.2×10^{-7}	2.38×10^{6}	0.0038
Stainless steel	6.9×10^{-7}	1.45×10^{6}	0.0009
Mercury	9.8×10^{-7}	1.02×10^{6}	0.0009
Carbon (amorph)	$5 - 8 \times 10^{-4}$	$1 - 2 \times 10^3$	-0.0005
Germanium	4.6×10^{-1}	2.17	-0.048
Silicon	6.4×10^{2}	1.56×10^{-3}	-0.075
Diamond	1.0×10^{12}	1.0×10^{-12}	
Quartz	$7.5 imes 10^{17}$	1.3×10^{-18}	
Teflon	$10^{23} - 10^{25}$	$10^{-25} - 10^{-23}$	
-			

Note $1/T=0.0034~{\rm K}^{-1}$ at 293 K \Rightarrow approximately $\rho \propto T$ for the best conducting metals.

Temperature dependence

- Linear at higher temperatures
- ▶ Residual resistivity (constant at low T) due to defects and impurities

Drude model setup

- ▶ Fixed nuclei (positive ion cores) + gas of moving electrons
- ► Electrons move freely with random velocities
- ▶ Electrons periodically scatter which randomizes velocity again
- lacktriangle Average time between collisions: mean free time au
- lacktriangle Average distance travelled between collisions: mean free path λ
- ▶ In zero field, drift velocity (averaged over all electrons)

$$\vec{v}_d \equiv \langle \vec{v} \rangle = 0$$

but electrons are not stationary:

$$\langle v^2 \rangle = u^2$$

► Current density carried by electrons:

$$\vec{j} = n(-e)\vec{v}_d = 0$$

where n is number density of electrons

Rensselaer

Apply electric field

- lacktriangle Electron starts at past time $t=-t_0$ with random velocity $ec{v}_0$
- Force on electron is $\vec{F}=(-e)\vec{E}$
- ▶ Solve equation of motion till present time t = 0:

$$m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = (-e)\vec{E}$$
$$\vec{v} = \vec{v}_0 - \frac{e\vec{E}t_0}{m}$$

- Need to average over all electrons
- $lackbox{ Probability that electron started at } -t_0$ and did not scatter till t=0 is

$$P(t_0) \propto e^{-t_0/ au} = e^{-t_0/ au}/ au$$
 (normalized)

Probability distribution of initial velocities satisfies

$$\int \mathrm{d} \vec{v}_0 P(\vec{v}_0) = 1$$
 (normalized)
$$\int \mathrm{d} \vec{v}_0 P(\vec{v}_0) \vec{v}_0 = 0$$
 (random)

Drift velocity in electric field

▶ Drift velocity is the average velocity of all electrons

$$\begin{split} \vec{v}_d &\equiv \left\langle \vec{v} \right\rangle \\ &\equiv \int \mathrm{d}\vec{v}_0 P(\vec{v}_0) \int_0^\infty \mathrm{d}t_0 P(t_0) \left(\vec{v}_0 - \frac{e\vec{E}t_0}{m} \right) \\ &= \int \mathrm{d}\vec{v}_0 P(\vec{v}_0) \vec{v}_0 \int_0^\infty \mathrm{d}t_0 P(t_0) - \int \mathrm{d}\vec{v}_0 P(\vec{v}_0) \int_0^\infty \mathrm{d}t_0 P(t_0) \frac{e\vec{E}t_0}{m} \\ &= 0 \cdot 1 - 1 \cdot \int_0^\infty \mathrm{d}t_0 \frac{e^{-t_0/\tau}}{\tau} \frac{e\vec{E}t_0}{m} \\ &= \frac{-e\vec{E}}{m\tau} \cdot \int_0^\infty t_0 \mathrm{d}t_0 e^{-t_0/\tau} \\ &= \frac{-e\vec{E}}{m\tau} \cdot \tau^2 \qquad \left(\int_0^\infty x^n \mathrm{d}x e^{-ax} = \frac{n!}{a^{n+1}} \right) \\ &= \frac{-e\vec{E}\tau}{m} \end{split}$$

Drude conductivity

► Current density carried by electrons:

$$\vec{j} = n(-e)\vec{v}_d = n(-e)\left(-\frac{e\vec{E}\tau}{m}\right) = \frac{ne^2\tau}{m}\vec{E}$$

▶ Which is exactly the local version of Ohm's law with conductivity

$$\sigma = \frac{ne^2\tau}{m}$$

- ► For a given metal, *n* is determined by number density of atoms and number of 'free' electrons per atom
- ightharpoonup e and m are fundamental constants
- \blacktriangleright Predictions of the model come down to τ (discussed next)
- ▶ Later: quantum mechanics changes τ , but above classical derivation remains essentially correct!

Classical model for scattering

- Electrons scatter against ions (nuclei + fixed core electrons)
- \triangleright Scattering cross-section $\sigma_{\rm ion}$: projected area within which electron would be scattered
- ▶ WLOG assume electron travelling along z
- \blacktriangleright Probability of scattering between z and $\mathrm{d}z$ is

$$-dP(z) = P(z) \underbrace{\sigma_{\text{ion}} dz}_{dV_{\text{eff}}} n_{\text{ion}}$$

where $n_{\rm ion}$ is number density of ions and $\mathrm{d}V_{\mathrm{eff}}$ is the volume from which

ions can scatter electrons ▶ This yields $P(z) \propto e^{-\sigma_{\rm ion} n_{\rm ion} z}$

$$\lambda = \frac{1}{n_{\rm ion}\sigma_{\rm ion}}$$

► ⇒ Mean free path

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

Classical estimate of scattering time

- From Drude model, $\tau = \sigma m/(ne^2)$
- Experimentally, $\sigma \propto T^{-1} \Rightarrow \tau \propto T^{-1}$
- From classical model, $\tau = \lambda/u$, where u is average electron speed
- $\lambda = 1/(n_{\rm ion}\sigma_{\rm ion})$ should be *T*-independent
- Kinetic theory: $\frac{1}{2}mu^2 = \frac{3}{2}k_BT \Rightarrow u = \sqrt{3k_BT/m}$
- ► Therefore classical scattering time

$$\tau = \frac{\lambda}{u} = \frac{1}{n_{\rm ion}\sigma_{\rm ion}\sqrt{3k_BT/m}} \propto T^{-1/2}$$

gets the temperature dependence wrong

Comparisons for copper

Experimentally:

$$\sigma = 6 \times 10^7 \; (\Omega \text{m})^{-1} \; (\text{at 293 K})$$

$$n = n_{\text{ion}} = \frac{4}{(3.61 \; \text{Å})^3} = 8.5 \times 10^{28} \; \text{m}^{-3}$$

$$\tau = \frac{\sigma m}{ne^2} = \frac{6 \times 10^7 \; (\Omega \text{m})^{-1} \cdot 9 \times 10^{-31} \; \text{kg}}{8.5 \times 10^{28} \; \text{m}^{-3} (1.6 \times 10^{-19} \; \text{C})^2} = 2.5 \times 10^{-14} \; \text{s}$$

Classical model:

$$\begin{split} &\sigma_{\rm ion} \sim \pi (1~\text{Å})^2 \sim 3 \times 10^{-20}~\text{m}^2 \\ &\lambda = \frac{1}{n_{\rm ion}\sigma_{\rm ion}} \sim \frac{1}{8.5 \times 10^{28}~\text{m}^{-3} \cdot 3 \times 10^{-20}~\text{m}^2} \sim 4 \times 10^{-10}~\text{m} \\ &u = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3 \cdot 1.38 \times 10^{-23}~\text{J/K} \cdot 293~K}{9 \times 10^{-31}~\text{kg}}} = 1.2 \times 10^5~\text{m/s} \\ &\tau = \frac{\lambda}{u} \sim 3 \times 10^{-15}~\text{s} \end{split}$$

Need σ_{ion} to be 10x smaller to match experiment

What changes in quantum mechanics?

- 1. Electron velocity in metals is (almost) independent of temperature
 - ▶ Pauli exclusion principle forces electrons to adopt different velocities
 - 'Relevant' electrons have Fermi velocity v_F (=1.6 imes 10⁶ m/s for copper)
- 2. Electrons don't scatter against ions of the perfect crystal
 - ▶ Electrons are waves which 'know' where all the ions of the crystal are
 - ▶ They only scatter when ions deviate from ideal positions!
 - ightharpoonup Crude model $\sigma_{\mathrm{ion}}=\pi x^2$ for RMS displacement x
 - ▶ Thermal displacements $\frac{1}{2}kx^2 = \frac{1}{2}k_BT$
 - ▶ Spring constant $k \sim Ya \sim$ (120 GPa)(3.6Å/ $\sqrt{2}$) ~ 30 N/m

•

$$\sigma_{\mathrm{ion}} = \frac{\pi k_B T}{k} \sim 4 \times 10^{-22} \mathrm{\ m}^2$$
 (at room T)

•

$$\tau = \frac{1}{n_{\rm ion} \pi_{\rm ion} v_E} = \frac{k}{n_{\rm ion} \pi k_B T v_E} \sim 1.7 \times 10^{-14} \text{ s (at room } T)$$

► Correct 1/T dependence and magnitude at room T (expt: 2.5×10^{-14} s)!

Matthiessen's rule

- Perfect metal: $\tau_T \propto T^{-1}$ due to scattering against thermal vibrations (so far)
- Impurity and defect scattering contribute $\tau_I \propto T^0$
- ightharpoonup Scattering rates (not times) are additive, so net au given by

$$\tau^{-1} = \tau_T^{-1} + \tau_I^{-1} + \cdots$$

▶ Resistivity $\rho \propto \tau^{-1} \sim \rho_0 + AT$ with residual resistivity ρ_0 due to τ_I

Mobility

Drude conductivity in general

$$\sigma = \frac{nq^2\tau}{m} = n|q|\mu$$

where n is the number density of charge carriers q with mobility

$$\mu = \frac{|q|\tau}{m}$$

effectively measuring the conductivity per unit (mobile) charge

- ▶ In metals, q = -e since charge carried by electrons (so far)
- ▶ In semiconductors, additionally q = +e for holes and

$$\sigma = e(n_e \mu_e + n_h \mu_h)$$

lacktriangle Semiconductors have typically higher μ , substantially lower n and σ

Hall effect

- Apply magnetic field perpendicular to current: voltage appears in third direction
- ► Hall coefficient defined by

$$R_H = \frac{E_y}{j_x B_z} = \frac{V_H/W}{I/(Wd)B_z} = \frac{V_H d}{IB_z}$$

- Simple explanation in Drude model
- ► Average driving force on carriers now

$$\vec{F} = q(\vec{E} + \vec{v}_d \times \vec{B})$$
$$= q(E_x \hat{x} - (v_d)_x B_z \hat{y})$$

- ▶ Steady-state current only in \hat{x}
- $\blacktriangleright \ \Rightarrow E_y = (v_d)_x B_z$ develops to cancel F_y

Hall coefficient in metals

- ▶ Note $E_y = (v_d)_x B_z$, while $j_x = nq(v_d)_x$
- ▶ Eliminate $(v_d)_x$ to get

$$R_H \equiv \frac{E_y}{j_x B_z} = \frac{1}{nq}$$

- ▶ In particular, q = -e for electronic conduction $\Rightarrow R_H = -1/(ne)$
- ► Compare to experimental values:

Metal	Experiment R_H [m $^3/$ C]	Drude R_H [m $^3/$ C]
Cu	-5.5×10^{-11}	-7.3×10^{-11}
Ag	-9.0×10^{-11}	-10.7×10^{-11}
Na	-2.5×10^{-10}	-2.4×10^{-10}
Cd	$+6.0 \times 10^{-11}$	-5.8×10^{-11}
Fe	$+2.5 \times 10^{-11}$	-2.5×10^{-11}

- ▶ Good agreement for 'free-electron' metals
- ▶ Wrong sign for some (transition metals)!

Hall coefficient in semiconductors

- Remember: conductivities due to electrons and holes add $\sigma = e(n_e\mu_e + n_h\mu_h)$
- Different drift velocities for electrons and holes
- ► For each of electrons and holes
 - Given driving force \vec{F} , drift velocity $\vec{v}_d = \vec{F}\tau/m$
 - Mobility $\mu \equiv |q|\tau/m$, so $\vec{v}_d = \vec{F}\mu/|q|$
 - ▶ Driving force $F_y = q(E_y (v_d)_x B_z)$
 - $lackbox{ Corresponding drift velocity } (v_d)_y = F_y \mu/|q|$
 - And corresponding current $j_y = nq(v_d)_y = nqF_y\mu/|q| = nq^2(E_y (v_d)_xB_z)\mu/|q|$
 - Substitute $(v_d)_x = (qE_x)\mu/|q|$ to get $j_u = n\mu(|q|E_u qE_x\mu B_z)$
- ▶ Net j_y must be zero (that's how we got Hall coefficient before):

$$0 = n_e \mu_e (eE_y + eE_x \mu_e B_z) + n_h \mu_h (eE_y - eE_x \mu_h B_z)$$

Hall coefficient in semiconductors (continued)

▶ Net zero j_u yields:

$$0 = n_e \mu_e (eE_y + eE_x \mu_e B_z) + n_h \mu_h (eE_y - eE_x \mu_h B_z)$$

$$= (n_e \mu_e + n_h \mu_h) E_y + (n_e \mu_e^2 - n_h \mu_h^2) E_x B_z$$

$$\Rightarrow R_H = \frac{E_y}{j_x B_z} = \frac{E_y}{\sigma E_x B_z}$$

$$= -\frac{n_e \mu_e^2 - n_h \mu_h^2}{(n_e \mu_e + n_h \mu_h) \sigma}$$

$$= \frac{-n_e \mu_e^2 + n_h \mu_h^2}{e(n_e \mu_e + n_h \mu_h)^2}$$

- Reduces to metal result if $n_h = 0$
- Note holes conrtibute positive coefficient, while electrons negative (not additive like conductivity)
- Transition metals can have positive Hall coefficients for the same reason! (Explained later with band structures.)

Frequency-dependent conductivity

- ightharpoonup So far, we applied fields $ec{E}$ constant in time
- lacktriangle Now consider oscillatory field $ec E(t)=ec E e^{-i\omega t}$ (such as from an EM wave)
- ▶ Same Drude model: free electron between collisions etc.
- ▶ Only change in equation of motion:

$$\begin{split} \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} &= \frac{q\vec{E}}{m}e^{-i\omega t} \\ \vec{v}(t) &= \vec{v}_0 + \int_{t-t_0}^t \mathrm{d}t \frac{q\vec{E}}{m}e^{-i\omega t} & \text{Note: must account for } t \text{ explicitly} \\ &= \vec{v}_0 + \frac{q\vec{E}}{m} \left[\frac{e^{-i\omega t}}{-i\omega} \right]_{t-t_0}^t \\ &= \vec{v}_0 + \frac{q\vec{E}}{m} \cdot \frac{e^{-i\omega(t-t_0)} - e^{-i\omega t}}{i\omega} \end{split}$$

Frequency-dependent conductivity: drift velocity

ightharpoonup Drift velocity (at t=0) is the average velocity of all electrons

$$\vec{v}_d(t) \equiv \int d\vec{v}_0 P(\vec{v}_0) \int_0^\infty dt_0 P(t_0) \left(\vec{v}_0 + \frac{q\vec{E}}{m} \cdot \frac{e^{-i\omega(t-t_0)} - e^{-i\omega t}}{i\omega} \right)$$

$$= \int_0^\infty dt_0 P(t_0) \frac{q\vec{E}}{m} \frac{e^{-i\omega(t-t_0)} - e^{-i\omega t}}{i\omega}$$

$$= \int_0^\infty dt_0 \frac{e^{-t_0/\tau}}{\tau} \frac{q\vec{E}}{m} \frac{e^{i\omega t_0} - 1}{i\omega} e^{-i\omega t}$$

$$= \frac{q\vec{E}}{im\omega\tau} \int_0^\infty dt_0 \left(e^{-t_0(1/\tau - i\omega)} - e^{-t_0/\tau} \right) e^{-i\omega t}$$

$$= \frac{q\vec{E}}{im\omega\tau} \left(\frac{1}{1/\tau - i\omega} - \tau \right) e^{-i\omega t} \qquad \left(\int_0^\infty x^n dx e^{-ax} = \frac{n!}{a^{n+1}} \right)$$

$$= \frac{q\vec{E}}{im\omega\tau} \cdot \frac{1 - (1 - i\omega\tau)}{1/\tau - i\omega} e^{-i\omega t}$$

$$= \frac{q\vec{E}\tau}{im\omega\tau} \cdot \frac{1}{1/\tau} e^{-i\omega t}$$

Frequency-dependent conductivity: Drude result

• As before, $\vec{j}(t) = nq\vec{v}_d(t)$, which yields conductivity

$$\sigma(\omega) = \frac{nq^2\tau}{m(1 - i\omega\tau)} = \frac{\sigma(0)}{1 - i\omega\tau}$$

- Same as before, except for factor $(1-i\omega\tau)$ (which $\to 1$ for $\omega \to 0$ as expected)
- ▶ What does the phase of the complex conductivity mean?
- Current density has a phase lag relative to electric field
- \blacktriangleright When field changes, collisions are needed to change the current, which take average time τ
- ▶ From constitutive relations discussion, complex dielectric function

$$\epsilon(\omega) = \epsilon_0 + \frac{i\sigma(\omega)}{\omega} = \epsilon_0 - \frac{nq^2/m}{\omega(\omega + i/\tau)}$$

Plasma frequency

- ightharpoonup Displace all electrons by x
- \blacktriangleright Volume xA containing only electrons with charge -xAne
- ightharpoonup Counter charge +xAne on other side due to nuclei
- ► Electric field by Gauss's law:

$$\vec{E} = \frac{xne}{\epsilon_0}\hat{x}$$

▶ Equation of motion of electrons:

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = (-e)E_x = -x\frac{ne^2}{\epsilon_0}$$

lacktriangle Harmonic oscillator with frequency ω_p given by

$$\omega_p^2 = \frac{ne^2}{m\epsilon_0}$$

Drude dielectric function of metals

► Simple form in terms of plasma frequency

$$\epsilon(\omega) = \epsilon_0 - \frac{nq^2/m}{\omega(\omega + i/\tau)} = \epsilon_0 \left(1 - \frac{\omega_p^2}{\omega(\omega + i/\tau)} \right)$$

▶ For $\omega \ll 1/\tau$,

$$\epsilon(\omega) \approx \epsilon_0 \left(1 + \frac{i\omega_p^2 \tau}{\omega} \right)$$

imaginary dielectric, real conductivity (Ohmic regime)

▶ For $1/\tau \ll \omega < \omega_p$,

$$\epsilon(\omega) \approx \epsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right)$$

negative dielectric constant (plasmonic regime)

▶ For $\omega > \omega_p$, positive dielectric constant (dielectric regime)

Copper dielectric function

- \blacktriangleright For copper, $\omega_p=10.8~\mathrm{eV}$ and $\tau=25~\mathrm{fs}$
- ▶ Note 1 eV corresponds to $\omega = 1.52 \times 10^{15}~{\rm s}^{-1}$ and $\nu = 2.42 \times 10^{14}~{\rm Hz}$

