
HW11 solution

MTLE-6120: Spring 2023

Due: April 14, 2023

1. Electrons crossing an interface

An electron inside a free-electron metal is approaching its surface at incident angle θ1 with respect to
the normal, and is then either reflected or transmitted to vacuum with some probability. The work
function of the metal is Φ, its Fermi level relative to the bottom of the band is EF , and we choose to
label the bottom of the metal’s band as the reference energy E = 0. Assume that the electron mass is
the free electron value m on both sides.

(Use this problem to develop an intuitive conection between wave optics and quantum electron me-
chanics discussed earlier in the course. Waves be waves!)

Metal Vacuum Metal Vacuum

(a) What is the minimum electron energy E that can cross the interface at normal incidence (θ1 = 0)?

At normal incidence, the electron just needs enough energy to cross the barrier. So its energy
must be E ≥ EF +Φ.

(b) What are the dispersion relations E(k⃗) for electrons in the metal and in vacuum?

On both sides, the electron is free and has dispersion relation of the form h̄2k2/(2m) relative
to the bottom of the band. The bottom of the band is 0 in the metal and EF + Φ in vacuum.
Therefore:

E(k⃗) =
h̄2k2

2m
metal

E(k⃗) =
h̄2k2

2m
+ EF +Φ vacuum

(c) For an electron of energy E sufficient to cross the interface, what are the magnitudes |⃗k1|, |⃗k′1|
and |⃗k2| of the incident, reflected and transmitted electron wavevectors respectively?

We just need to invert the equations of the previous part, noting that the incident and reflected
waves are in the metal and the transmitted wave is in vacuum. Therefore:

|⃗k1| = |⃗k′1| =
√
2mE

h̄

|⃗k2| =
√
2m(E − EF − Φ)

h̄
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(d) Using the phase-matching condition that the components of k⃗ in the plane of the interface must
be equal for all three electron waves, derive Snell’s law for the electron of energy E (i.e. what
is the relation between θ1, θ

′
1 and θ2). Express your answer only in terms of E,EF ,Φ and any

fundamental constants.

Matching the wavevector components in the plane yields:

|⃗k1| sin θ1 = |⃗k′1| sin θ′1 = |⃗k2| sin θ2

This immediately yields the condition for reflection:

θ′1 = θ1

since |⃗k1| = |⃗k′1|. For transmission, the condition is:

sin θ2
sin θ1

=
|⃗k1|
|⃗k2|

=

√
E

E − EF − Φ

(e) Write the matching conditions for the electron wavefunction across the interface and solve for the
reflection and transmission amplitudes, r ≡ A′

1/A1 and t ≡ A2/A1. Express the answer only in
terms of E,EF ,Φ, cos θ1 and any fundamental constants. Hint: you only need to do this at one
point, which you can set as r⃗ = 0 for convenience.

The matching conditions are that the value and derivatives must be continuous. The matching
conditions for the in-plane derivatives are redundant with the value condition because Snell’s
law above matched the in-plane wavevectors. So we only need the value and normal derivative
matching condition.

The value matching condition is:
A1 +A′

1 = A2

while the normal derivative matching condition is:

i|⃗k1| cos θ1A1 − i|⃗k1| cos θ′1A′
1 = i|⃗k2| cos θ2A2

which simplifies to:

A1 −A′
1 = A2

|⃗k2| cos θ2
|⃗k1| cos θ1︸ ︷︷ ︸

x

.

For convenience, we define

x ≡ |⃗k2| cos θ2
|⃗k1| cos θ1

=
sin θ1

√
1− sin2 θ2

sin θ2 cos θ1
=

√
1− E

E−EF−Φ sin2 θ1√
E

E−EF−Φ cos θ1
=

√
1− EF +Φ

E cos2 θ1

We can now solve the two equations above for A′
1 and A2 in terms of A1, which yield the reflection

and transmission amplitudes:

r ≡ A′
1

A1
=

1− x

1 + x
=

1−
√
1− EF+Φ

E cos2 θ1

1 +
√
1− EF+Φ

E cos2 θ1

t ≡ A2

A1
=

2

1 + x
=

2

1 +
√
1− EF+Φ

E cos2 θ1
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(f) What are the conditions for total internal reflection, and for zero reflection?

The condition for total internal reflection is that the transmitted ray no longer exist, which
happens when sin θ2 ≥ 1 in the Snell’s law equation above i.e.

sin θ2 = sin θ1

√
E

E − EF − Φ
≥ 1 ⇒ sin θ1 ≥

√
E − EF − Φ

E

The condition for zero reflection (Brewster angle), r = 0 yields x = 1 i.e.

1 =

√
1− EF +Φ

E cos2 θ1

⇒ 2 =
EF +Φ

E cos2 θ1

⇒ cos θ1 =

√
EF +Φ

2E

⇒ sin θ1 =

√
1− EF +Φ

2E

2. Kasap 5.29: Seebeck coefficient and thermal drift in semiconductor devices

(a) Holes and electrons both diffuse from hot to cold sides, but correspond to opposite charge transport
directions. Electrons lead to negative S in n-type semiconductors, compared to holes which yield
positive S in p-type semiconductor.

(b) Charge neutrality for an n-type semiconductor yields Nc exp
EF−Ec

kBT = Nd. Therefore the Seebeck
coefficient is:

Sn = −kB
e

[
2 +

Ec − EF

kBT

]
= −kB

e

[
2 + ln

Nc

Nd

]
Given that kB/e = 8.63 × 10−5 V/K and Nc = 2.8 × 1019 cm-3, we can easily calculate Sn =
−1.26 × 10−3 V/K for Nd = 1014 cm-3 and −8.58 × 10−4 for Nd = 1016 cm-3. The implication
for devices is that temperature changes and gradients can induce changes in the voltages at the
outputs of devices, thereby contributing to thermal drift.

(c) We have already calculated Sn = −1.26 × 10−3 V/K for Nd = 1014 cm-3 n-type Si. We can
neglect Sp because with this asymmetric doping, most of the potential drop is in the n side. The
potential corresponding to 1C i.e. 1K change of temperature is 1.26 mV, which amplified by a
gain of 100 will produce an output of 0.13 V.

3. Kasap 6.2: The Si pn junction (estimating recombination and diffusion currents)

In answering, ‘what is your conclusion’, include your expectation for the diode ideality factor η.

Hint: you will need the diffusion constants for the carriers. Assume De = 34.9 cm2/s and Dh =
11.6 cm2/s. (Diffusion constants are related to mobilities by the Einstein relation De/h = (kBT/e)µe/h)
Besides that, the only other Si-specific properties you should need are ni = 1010 cm-3 and ϵr = 11.7.

The diffusion current is js = js0 exp
eV
kBT where

js0 = en2
i

[
Dh

LhNd
+

De

LeNa

]
= en2

i

[
1√

DhτhNd

+
1√

DeτeNa

]
while the recombination current is jr = jr0 exp

eV
2kBT where

jr0 =
eni

2

[
wp

τe
+

wn

τh

]
.
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Note that for this we first need to calculate the built-in potential

V0 = kBT log
NaNd

n2
i

,

the depletion width

w0 =

√
2ϵ(Na +Nd)(V0 − V )

eNaNd

and from that the widths on the two sides wp and wn.

(a) Let us start with the recombination times. Using the given formula, τe = 2.4 × 10−8 s in the
p-region (irrelevant) and τh = 4.9× 10−7 s in the n-region (required).

The built in potential evaluates to V0 = 0.77 V, which yields a depletion width of w0 = 4.74 ×
10−5 cm (474 nm). This splits into wp = 4.74 × 10−8 cm (0.47 nm, irrelevant) and wn ≈ w0 =
4.73× 10−5 cm (473 nm, required).

From these, we can calculate the prefactors for the two current contributions as js0 = 6.74 ×
10−12 A/cm2 and jr0 = 1.58×10−7 A/cm2. Finally accounting for the area of 1 mm2 = 0.01 cm-2

and the exponential factors, we get

Is = 0.82 mA and Ir = 0.17 mA

Therefore recombination is comparable but smaller than the diffusion contribution, which will
yield an ideality coefficient closer to 1.

(b) The recombination times are, τe = τh = 2.4× 10−8 s on both sides of the interface.

The built in potential evaluates to V0 = 0.95 V, which yields a depletion width of w0 = 3.02 ×
10−6 cm (30 nm). This splits evenly into wp = wn = 1.51× 10−6 cm (15 nm).

From these, we can calculate the prefactors for the two current contributions as js0 = 4.80 ×
10−14 A/cm2 and jr0 = 2.03×10−7 A/cm2. Finally accounting for the area of 1 mm2 = 0.01 cm-2

and the exponential factors, we get

Is = 5.8 µA and Ir = 0.22 mA

Therefore recombination far exceeds the diffusion contribution, which will yield an ideality factor
closer to 2.

4. Kasap 6.15: Ultimate limits to device performance (of an n-channel FET)

Note: for part (c), assume and justify reasonable values for the barriers. Consider tunneling to become
important when tunneling probabilities ∼ 10−6.

Also, there might be a typo in the example number referenced by some editions of the book. (In mine,
it says 3.10, but it should be 3.12.)

(a) The electron PE changes by eVDS ≥ kBT ≈ 0.026 eV, in order to exceed thermal fluctuations.
Therefore VDS ≥ 0.026 V.

Given a field of 106 V/m, this VDS corresponds to a channel length L ∼ 2.6× 10−8 m (26 nm).

With saturated velocity of 105 m/s, this corresponds to a transit time of τt ∼ 2.6 × 10−13 s
(0.26 ps).

(b) The characteristic time associated with eVDS ∼ kBT ≈ 0.026 eV is τ ∼ h̄/(kBT ) ∼ 2.5× 10−14 s
(25 fs), an order of magnitude smaller than the transit time above.

(c) We can assume that the barriers for tunneling are ∼ 1 eV. This is the typical magnitude for
built-in potentials in Si, which affects the barrier for tunneling across the channel. This typical
band offsets between Si and SiO2 are also in the same order of magnitude, with ∼ 3 eV barrier
for electrons and ∼ 2 eV barriers for holes.

The tunneling probability is T ∼ exp(−2L
√
2m(V − E)/h̄). For barrier (V − E) ∼ 1 eV, the

wavevector κ =
√

2m(V − E)/h̄ ∼ 5 × 109 m-1. Therefore for exp(−2Lκ) ∼ 10−6, L ∼ 1.4 nm.
At these channel lengths or oxide thicknesses, tunneling will become a limitation.
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