HW10

MTLE-6120: Spring 2023

Due: April 7, 2023

1. Optical property comparison

The density of states of six single-crystalline materials are sketched below. (Note that (E) and (F) are intentionally visually indistinguishable.)

- (a) Identify each material as metallic, semiconducting or insulating.
- (b) Describe the visual appearance of crystals of each material.
- (c) What experiment would you perform to distinguish (A) and (C), and why? (Mention the results expected for each.)
- (d) Despite nearly identical density of states, the absorption spectra of (E) and (F) happen to differ as shown below. Explain how this is possible, and what impact will it have on the appearance of these materials.

2. Optical pumping and fluorescence

Consider the minimal three-level system necessary for fluorescence (and lasing) as shown below. A pump light of intensity I_{pump} is tuned to a frequency matching $E_2 - E_1$, and assume the intensities

at other frequencies are small enough that stimulated emission is negligible for the other transitions. Assume A and B coefficients for each pair of states as shown.

- (a) Write the differential equations governing the kinetics of N_1 , N_2 and N_3 : the populations (electrons / volume) for the three states.
- (b) In steady state, find the ratio N_3/N_1 in order to determine the condition for population inversion $(N_3 > N_1)$. Find and interpret the $I_{\text{pump}} \to \infty$ limit of this criterion.
- (c) What is the net power density (rate of energy change per unit volume) absorbed from the pump light into the electrons? Assume that stimulated emission puts energy back into I_{pump} (best case scenario for efficiency), while the energy from spontaneous emission is lost. Just write the answer in terms of instantaneous N_1 , N_2 , N_3 (don't solve for the Ns).
- (d) Similarly, what is the power density output from the $3 \rightarrow 1$ transition (fluorescence)? Again, just express in terms of N_1 , N_2 , N_3 as needed.
- (e) What is the energy efficiency of the fluorescence process in steady state, and how does it depend on I_{pump} ? (This time, solve for the Ns in terms of the A, B parameters and interpret!)