Superconductivity

Reading:

- ► Kasap: 8.9 8.10
- ▶ *Nature* **518**, 179 (2015) for high T_c

Zero resistance

- lacktriangle Many metals exhibit zero resistance below a temperature T_c
- ▶ First discovered in 1911 in mercury $(T_c = 4.2 \text{ K})$
- lacktriangle Poorer conductors are usually better superconductors (higher T_c)
- lacktriangle Gold, copper and silver have negligible T_c
- lacktriangle Highest among pure metals: lead ($T_c=7.2$ K) and niobium ($T_c=9.3$ K)

Meissner effect

- ▶ Superconductor ≠ perfect conductor
- Perfect conductor permits magentic fields (like normal metal)
- Superconductor expels magentic field completely
- ▶ Meissner effect: perfect diamagnetism $\chi_m = -1$
- lacktriangle Typical paramagnetic or diamagnetic metals, $|\chi_m| \sim 10^{-6} 10^{-4}$

Critical fields

- lacktriangle Perfect diamagnet up to a maximum field H_c
- lacktriangle Two types of behavior possible beyond H_c
- ▶ Type I: Abrupt transition to normal state $\rho \neq 0$, $\chi_m \sim 0$
- ▶ Type II: gradual reduction of $|\chi_m| \to 0$ (with $\rho = 0$)
- ▶ Mixed state of $\rho = 0$ and $\chi_m > -1$ ranges from lower critical field H_{c1} to upper critical field H_{c2}

Critical fields: T dependence

- Critical field decreases with temperature (exactly like ferromagnets)
- lacktriangle Higher critical field correlated with higher T_c
- ▶ Upper and lower critical fields vanish together at T_c for type II (no T_{c1} and T_{c2})

Mixed state: vortices

- ► Field enters superconductor in domains: vortices
- Normal state inside, and superconducting (SC) state outside
- ▶ Quantum of flux $\Phi_0 = rac{h}{2e} pprox 2 imes 10^{-15} \; {
 m Tm}^2$ in each vortex
- lacktriangle Increasing density of vortices between H_{c1} and H_{c2}
- ▶ At H_{c2} , no SC region left $\Rightarrow \rho \neq 0$

Critical current

- ▶ Beyond current density j_c , switch to normal state
- ▶ Primary application of superconductors: high-field magnets
- ightharpoonup T, j and H (B) all push SC to normal state
- ► Limiting magnet performance limited by critical surface
- lacktriangle For metals and alloys, j_c and H_c increase with T_c
- ▶ Not generally true for high- T_c materials

Microscopic origins: e-ph interactions

- ▶ One electron distorts the lattice (emits / absorbs a phonon)
- ▶ This distortion reduces potential for second electron
- Attractive electron-electron interaction mediated by phonons
- ▶ Attraction $-\Delta$ between electrons at $k \uparrow$ and $-k \downarrow$
- lacktriangle All electrons near Fermi surface in Coooper pairs with energy reduced by Δ
- lacktriangle Result: band gap Δ near Fermi surface: no free electrons

Microscopic origins: BCS theory

- \blacktriangleright Attraction produces band gap Δ
- \blacktriangleright But, pairs behave like spin zero particles with net charge 2e
- **\blacktriangleright** Bosons: all pairs in same quantum state for $T < T_c$
- ► Apply field, all pairs carry current together (coherently)
- ▶ Gap $\Delta \Rightarrow$ no states to scatter into!
- Perfect conductor because of gap!
- ► Facilitated by e-ph interactions ⇒ resistive metals are better superconductors!
- ▶ Increase temperature: pairs break thermally (T_c)
- lacktriangle Increase magentic field: imbalance in spin energies breaks pair (H_c)
- Increase current density: pairs have enough momentum to scatter against electrons (j_c)

Microscopic origins: Type I vs Type II

Two important length scales in superconductors

- 1. Coherence length ξ : length scale of the quantum wavefunction variation
- 2. Penetration depth λ : length scale of magnetic field variation
- ▶ When $\xi > \lambda$, cost of breaking wavefunction higher: stay SC till pairs break (Type I)
- ▶ When $\xi < \lambda$, break wavefunction to relax magnetic field energy \Rightarrow favorable to form vortices (Type II)
- lacktriangle Vortex: normal state extent $\sim \xi$ surrounded by field region $\sim \lambda$

T_c versus time

- lacktriangle Conventional metals with $T_c < 10$ K and alloys with $T_c < 40$ K
- \blacktriangleright New classes of materials with T_c approaching 160 K!

Typical phase diagram of cuprate superconductors

- Correlated-electron materials: many poorly understood phases!
- ▶ Antiferromagnetism, spin-density waves and strange metals
- ▶ Strange metal: resistivity $\propto T$ even when $\lambda < a$
- d-wave superconductor: pairs have l=2 instead of l=0 (BCS)

Psuedogap: Fermi surface arcs

- lacktriangle No real superconducting gap Δ
- Anisotropic gap in states with zero gap in certain directions
- ► Angular dependence of gap like a *d*-orbital
- ▶ Read *Nature* **518**, 179 (2015) for more!

