Metal-vacuum junctions: thermal and field emission

Reading:

- ► Kasap 4.9
- ► Review Kasap 3.1.2 (Photoelectric effect)

Photoelectric effect

- ▶ Light ejects electrons from cathode $\Rightarrow I$ at V = 0
- ▶ $V \uparrow \Rightarrow I \uparrow \text{ till saturation (all ejected electrons collected)}$
- $V\downarrow \Rightarrow I\downarrow \mbox{till }I=0:$ all electrons stopped at $V=-V_0$
- Increase intensity \mathcal{I} : higher saturation I but same stopping V
- Increase frequency ω : higher stopping V
- ▶ Stopping action: $eV_0 = KE_{max}$
- Experiment finds $eV_0 \propto (\omega \omega_0)$
- ▶ In fact $eV_0 = \hbar(\omega \omega_0)$
- ▶ Different cathodes \Rightarrow different ω_0 but same slope \hbar identical to that from Planck's law!
- Light waves with angular frequency ω behave like particles (photons) with energy $\hbar\omega$ (Einstein, 1905)

Workfunction: energy level alignment with vacuum

- lacktriangle Minimum energy Φ required to free electron from material
- ▶ Photoelectric effect threshold is $\hbar\omega_0 = \Phi$
- Electrons emitted with kinetic energy $KE = \hbar\omega \hbar\omega_0$
- ▶ Determined by alignment of energy levels across metal-vacuum interface

What determines workfunction?

- ▶ Electron binding in bulk material (stongly bound \Rightarrow higher Φ)
- ► Equally important: surface of the metal i.e. metal-vacuum interface
- Energy-level alignment sensitive to details of the surface
- ► Example: work functions (in eV) of single crystalline metal surfaces

Metal	(110)	(100)	(111)	Polycrystalline
Αl	4.06	4.20	4.26	4.1 - 4.3
Au	5.12	5.00	5.30	5.1 - 5.4
Ag	4.52	4.64	4.74	4.3 - 4.7
Cu	4.48	4.59	4.94	4.5 - 5.1

 Values for polycrystalline metals averaged over facets (whose relative prominence depends on sample preparation)

Thermionic emission

- Overcome energy difference (barrier) using thermal energy
- Number of electrons above barrier:

$$\int_{E_F+\Phi}^{\infty} \mathrm{d}E g(E) f(E) \approx \int_{E_F+\Phi}^{\infty} \mathrm{d}E g(E) \exp \frac{-(E-E_F)}{k_B T}$$

(assuming $\Phi\gg k_BT$, which holds for metals even at $T_{
m melt}$)

- ► Can all these electrons cross?
- Need KE towards surface

$$\frac{m(v\cos\theta)^2}{2} > E_F + \Phi$$

Current density per state:

$$\langle ev\cos\theta\rangle = \frac{ev(1-\frac{E_F+\Phi}{E})}{4}$$

Richardson-Dushman equation

► Current density of emitted electrons:

$$j = \int_{E_F + \Phi}^{\infty} dE g(E) \exp \frac{-(E - E_F)}{k_B T} \cdot \frac{ev(1 - \frac{E_F + \Phi}{E})}{4}$$

► Assuming $\Phi \gg k_B T$ and free-electron $g(E) = 4\pi \sqrt{E} \left(\frac{\sqrt{2m}}{2\pi\hbar}\right)^3$:

$$j = \underbrace{\frac{4\pi e m k_B^2}{(2\pi\hbar)^3}}_{B_0} T^2 \exp \frac{-\Phi}{k_B T}$$

with Richardson-Dushman constant $B_0 \approx 1.20 \times 10^6 \text{ A/(mK)}^2$

- Additional consideration: electrons with sufficient KE can still be reflected
- ▶ Include energy-dependent reflection coefficient in above consideration
- ▶ Modified $B_e \lesssim B_0/2$ for most metals, $\ll B_0$ for some d-metals (why?)

Electron near a metal surface

- ▶ Metal surface at constant potential; electric field normal
- ▶ Electric field outside as if due to charge and its reflection

$$E(\vec{r}) = \frac{q(\vec{r} - z\hat{z})}{4\pi\epsilon_0 |\vec{r} - z\hat{z}|^3} - \frac{q(\vec{r} + z\hat{z})}{4\pi\epsilon_0 |\vec{r} + z\hat{z}|^3}$$

► Force on charge:

$$\vec{F} = \frac{-q^2 \hat{z}}{4\pi\epsilon_0 (2z)^2}$$

▶ Potential energy:

$$U = -\int_{\infty}^{z} \vec{F} \cdot \hat{z} = \frac{-q^2}{16\pi\epsilon_0 z}$$

Schottky effect

- Image charge effect changes energy level diagram (horizontal axis is now distance from interface)
- \blacktriangleright What is the energy barrier for electrons at E_F ?
- Now consider an applied electric field \mathcal{E}
- ▶ Net minimum energy level of electron is now:

$$E_{\min}(z>0) = E_F + \Phi - \frac{e^2}{16\pi\epsilon_0 z} - e\mathcal{E}z \leq E_F + \Phi - \sqrt{\frac{e^3\mathcal{E}}{16\pi\epsilon_0}}$$

▶ Barrier reduced to $\Phi - \beta_s \sqrt{\mathcal{E}}$ with Schottky coefficient $\beta_s = \sqrt{e^3/(16\pi\epsilon_0)} \approx 3.79 \times 10^{-5} \text{ eV}/\sqrt{\text{V/m}}$

Field emission

- ▶ Electric field reduces effective barrier for electron emission
- ightharpoonup Still use thermal energy, but with a lower barrier \Rightarrow use lower T
- ► Technically field-assisted thermionic emission
- lacktriangle Use sharpened metal tips / nanowires / nanotubes to enahance local ${\mathcal E}$
- ▶ So far, considered electrons thermally excited across barrier
- \blacktriangleright Will there be a current at T=0?

Fowler-Nordheim tunneling

- \blacktriangleright Consider very strong electric field \mathcal{E} ; neglect Schottky effect
- Minimum energy of electron in vacuum $E_{\min}(z) \approx E_F + \Phi e\mathcal{E}z$
- ▶ Electrons in metal with energy $E < E_F$ have less than minimum energy for $0 < z < \frac{E_F + \Phi E}{e \mathcal{E}}$
- ► Tunneling probability, accounting for *z*-KE:

$$T(p_z) \approx \exp \frac{-2\int dz \sqrt{2mE_{\min}(z) - p_z^2}}{\hbar} \approx \exp \frac{-4\sqrt{2m}\left(E_F + \Phi - \frac{p_z^2}{2m}\right)^{3/2}}{3e\hbar\mathcal{E}}$$

► Tunneling current:

$$j = \int_{p < p_E} \frac{\mathrm{d}\vec{p}}{(2\pi\hbar)^3} \frac{ep_z}{m} T(p_z) \approx \frac{e^3}{16\pi^2\hbar\Phi} \mathcal{E}^2 \exp\frac{4\sqrt{2m\phi^3}}{3e\hbar\mathcal{E}}$$

(based on the semi-classical WKB approximation for wavefunctions)

 Identical dependence with E, as thermionic emission had with T (even though one strictly classical, other quantum mechanical)

