
MTLE-6120: Advanced Electronic Properties of Materials

Metal-vacuum junctions: thermal and field emission

Reading:

I Kasap 4.9

I Review Kasap 3.1.2 (Photoelectric effect)
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Photoelectric effect
I Light ejects electrons from cathode ⇒ I at V = 0

I V ↑⇒ I ↑ till saturation (all ejected electrons collected)

I V ↓⇒ I ↓ till I = 0:
all electrons stopped at V = −V0

I Increase intensity I:
higher saturation I but same stopping V

I Increase frequency ω:
higher stopping V

I Stopping action: eV0 = KEmax

I Experiment finds eV0 ∝ (ω − ω0)

I In fact eV0 = ~(ω − ω0)

I Different cathodes ⇒ different ω0

but same slope ~ identical to that
from Planck’s law!

I Light waves with angular frequency ω behave like
particles (photons) with energy ~ω (Einstein, 1905)
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Workfunction: energy level alignment with vacuum
I Minimum energy Φ required to free electron from material

I Photoelectric effect threshold is ~ω0 = Φ

I Electrons emitted with kinetic energy KE = ~ω − ~ω0

I Determined by alignment of energy levels across metal-vacuum interface
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What determines workfunction?

I Electron binding in bulk material (stongly bound ⇒ higher Φ)

I Equally important: surface of the metal i.e. metal-vacuum interface

I Energy-level alignment sensitive to details of the surface

I Example: work functions (in eV) of single crystalline metal surfaces

Metal (110) (100) (111) Polycrystalline
Al 4.06 4.20 4.26 4.1 − 4.3
Au 5.12 5.00 5.30 5.1 − 5.4
Ag 4.52 4.64 4.74 4.3 − 4.7
Cu 4.48 4.59 4.94 4.5 − 5.1

I Values for polycrystalline metals averaged over facets
(whose relative prominence depends on sample preparation)
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Thermionic emission

I Overcome energy difference (barrier) using thermal energy

I Number of electrons above barrier:∫ ∞
EF +Φ

dEg(E)f(E) ≈
∫ ∞
EF +Φ

dEg(E) exp
−(E − EF )

kBT

(assuming Φ� kBT , which holds for metals even at Tmelt)

I Can all these electrons cross?

I Need KE towards surface

m(v cos θ)2

2
> EF + Φ

I Current density per state:

〈ev cos θ〉 =
ev(1− EF +Φ

E )

4
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Richardson-Dushman equation

I Current density of emitted electrons:

j =

∫ ∞
EF +Φ

dEg(E) exp
−(E − EF )

kBT
·
ev(1− EF +Φ

E )
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I Assuming Φ� kBT and free-electron g(E) = 4π
√
E
(√

2m
2π~

)3

:

j =
4πemk2

B

(2π~)3︸ ︷︷ ︸
B0

T 2 exp
−Φ

kBT

with Richardson-Dushman constant B0 ≈ 1.20× 106 A/(mK)2

I Additional consideration: electrons with sufficient KE can still be reflected

I Include energy-dependent reflection coefficient in above consideration

I Modified Be . B0/2 for most metals, � B0 for some d-metals (why?)
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Electron near a metal surface

I Metal surface at constant potential; electric field normal

I Electric field outside as if due to charge and its reflection

E(~r) =
q(~r − zẑ)

4πε0|~r − zẑ|3
− q(~r + zẑ)

4πε0|~r + zẑ|3

I Force on charge:

~F =
−q2ẑ

4πε0(2z)2

I Potential energy:

U = −
∫ z

∞
~F · ẑ =

−q2

16πε0z
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Schottky effect

Metal Vacuum Metal Vacuum

I Image charge effect changes energy level diagram
(horizontal axis is now distance from interface)

I What is the energy barrier for electrons at EF ?
I Now consider an applied electric field E
I Net minimum energy level of electron is now:

Emin(z > 0) = EF + Φ− e2

16πε0z
− eEz ≤ EF + Φ−

√
e3E

16πε0

I Barrier reduced to Φ− βs
√
E with Schottky coefficient

βs =
√
e3/(16πε0) ≈ 3.79× 10−5 eV/

√
V/m
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Field emission

I Electric field reduces effective barrier for electron emission

I Still use thermal energy, but with a lower barrier ⇒ use lower T

I Technically field-assisted thermionic emission

I Use sharpened metal tips / nanowires / nanotubes to enahance local E
I So far, considered electrons thermally excited across barrier

I Will there be a current at T = 0?

Metal Vacuum
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Fowler-Nordheim tunneling

I Consider very strong electric field E ; neglect Schottky effect

I Minimum energy of electron in vacuum Emin(z) ≈ EF + Φ− eEz
I Electrons in metal with energy E < EF have less than minimum energy for

0 < z < EF +Φ−E
eE

I Tunneling probability, accounting for z-KE:

T (pz) ≈ exp
−2
∫

dz
√

2mEmin(z)− p2
z

~
≈ exp

−4
√

2m
(
EF + Φ− p2z

2m

)3/2

3e~E

(based on the semi-classical WKB approximation for wavefunctions)

I Tunneling current:

j =

∫
p<pF

d~p

(2π~)3

epz
m
T (pz) ≈

e3

16π2~Φ
E2 exp

4
√

2mφ3

3e~E

I Identical dependence with E , as thermionic emission had with T
(even though one strictly classical, other quantum mechanical)
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