MTLE-6120: Advanced Electronic Properties of Materials

Insulating materials: dielectrics, ferroelectrics, piezoelectrics

Reading:

1

Materials in electric fields

- All materials composed of charges: electrons and nuclei
- Charges pulled along/opposite electric field with force $q ec{E}$
- Charges separated in each infinitesimal chunk of matter \Rightarrow dipoles
- Induced dipole moment:

$$\delta \vec{p} = \delta q \delta x \hat{x}$$

Polarization is the density of induced dipoles:

$$\vec{P} = \frac{\delta \vec{p}}{\delta x \delta a} = \frac{\delta q}{\delta a} \hat{x}$$

Bound charge due to polarization

Charge density in infinitesimal chunk

$$\rho_b = \frac{\delta q_1 - \delta q_2}{\delta a \delta x}$$
$$= \frac{\frac{\delta q_1}{\delta a} - \frac{\delta q_2}{\delta a}}{\delta x}$$
$$= \frac{P_x(x) - P_x(x + \delta x)}{\delta x}$$
$$= -\frac{\partial P_x}{\partial x}$$

• Similarly accounting for y and z components:

$$\rho_b = -\nabla \cdot \vec{P}$$

Constitutive relations

- \blacktriangleright Material determines how \vec{P} (and hence $\vec{D})$ depends on \vec{E}
- Material determines how \vec{M} (and hence \vec{H}) depends on \vec{B}
- Simplest case: linear isotropic dielectric

$$\vec{P} = \chi_e \epsilon_0 \vec{E} \qquad \qquad \vec{M} = \chi_m \vec{H}$$
$$\vec{D} = (1 + \chi_e) \epsilon_0 \vec{E} \qquad \qquad \vec{B} = (1 + \chi_m) \mu_0 \vec{H}$$
$$\epsilon = (1 + \chi_e) \epsilon_0 \qquad \qquad \mu = (1 + \chi_m) \mu_0$$

▶ Anisotropic dielectric: $\vec{P} = \bar{\chi_e} \cdot \epsilon_0 \vec{E}$ with susceptibility tensor $\bar{\chi_e}$

• Nonlinear dielectric: $\vec{P} = \chi_e(E)\epsilon_0\vec{E}$

Capacitance

- Gauss's law: $E = \frac{q}{\epsilon_0 A}$
- Potential difference $V = d \cdot E = \frac{qd}{\epsilon_0 A}$
- Therefore stored charge per potential

$$C \equiv \frac{q}{V} = \frac{\epsilon_0 A}{d}$$

- \blacktriangleright Material produces polarization \vec{P}
- Corresponding bound charge density $\frac{\delta q}{A} = P$ on surface

• Gauss's law:
$$E = \frac{q - \delta q}{\epsilon_0 A} = \frac{q}{\epsilon_0 A} - \frac{P}{\epsilon_0}$$

$$\blacktriangleright q = A(\epsilon_0 E + P) = AD = A\epsilon E = \frac{A\epsilon}{d}V$$

• Therefore $C = \frac{A\epsilon}{d}$ (increases by ϵ/ϵ_0)

Sources of polarization

- \blacktriangleright Need to know constitutive relation $\vec{P}=\chi_e\epsilon_0\vec{E}$
- ▶ i.e. need $\chi_e \equiv$ induced dipole / volume per unit field E
- Various sources:
 - ▶ Electrons bound to atoms (ala HW1): electronic polarizability
 - Dispalcement of ions in an ionic solid
 - Rotations of dipoles in a dipolar material
- \blacktriangleright Define polarizability $\alpha \equiv$ dipole moment induced per unit field E in atom / molecule
- ▶ Relation between χ_e and α is $\chi_e \epsilon_0 = N \alpha$, where N is number density of atoms / molecules?
- ► Almost, but not quite: local field differs from macroscopic field!

Lorenz equation

- Each atom / molecule feels effect of field $ec{E}$
- It additionally feels effect of field produced by surrounding atoms / molecules
- \blacktriangleright Surrounding molecules have \vec{P} except in a 'cavity' containing the atom
- ▶ For simplicity assume spherical cavity
- Bound charge due to polarization $\rho_b = -\nabla \cdot \vec{P} = 0$
- Except at edge of cavity, where it changes abruptly
- Bound surface charge density $\sigma = -\vec{P}\cdot\hat{n}$
- Corresponding electric field (at center):

$$\delta E_{\rm loc} = \int_{-1}^{1} \underbrace{2\pi r^2 \mathrm{d}\cos\theta}_{\mathrm{d}A} \frac{P\cos\theta}{4\pi\epsilon_0 r^2} \cos\theta$$
$$= \frac{P}{3\epsilon_0}$$

• Net local field
$$\vec{E}_{loc} = \vec{E} + \frac{\vec{P}}{3\epsilon_0}$$

Clausius-Mossoti relation

- Induced dipole moment $\vec{p} = \alpha \vec{E}_{loc}$
- Polarization density $\vec{P} = N\vec{p} = N\alpha\vec{E}_{loc}$
- Relation between χ_e and α :

$$\vec{P} = N\alpha \vec{E}_{\rm loc} = N\alpha \left(\vec{E} + \frac{\vec{P}}{3\epsilon_0}\right)$$
$$\vec{P} \left(1 - \frac{N\alpha}{3\epsilon_0}\right) = N\alpha \vec{E}$$
$$\chi_e \equiv \frac{\vec{P}}{\epsilon_0} = \frac{\frac{N\alpha}{\epsilon_0}}{1 - \frac{N\alpha}{3\epsilon_0}} > \frac{N\alpha}{\epsilon_0}$$

- i.e. local field enhances response
- Dielectric constant (Clausius-Mossoti relation):

$$\epsilon = \epsilon_0 (1 + \chi_e) = \epsilon_0 \frac{1 + \frac{2N\alpha}{3\epsilon_0}}{1 - \frac{N\alpha}{3\epsilon_0}} \qquad \Leftrightarrow \qquad \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} = \frac{N\alpha}{3\epsilon_0}$$

Electronic / ionic polarization

- Charges: either electrons or ions in equilibrium position
- \blacktriangleright Displacement produces restoring forces: effective spring constant k
- Equation of motion in electric field:

$$m\ddot{x} = -kx - \gamma\dot{x} + qEe^{-i\omega t}$$

Solve in frequency domain:

$$x = \frac{qE}{k - i\gamma\omega - m\omega^2}$$

Polarizability (Lorentz oscillator model):

$$\alpha = \frac{p}{E} = \frac{qx}{E} = \frac{q^2}{k - i\gamma\omega - m\omega^2}$$

- Qualitatively similar behavior for electrons and ions
- Electrons: high k and small $m \Rightarrow$ smaller α over larger ω range
- \blacktriangleright lons: small k and large $m \Rightarrow$ greater α over smaller ω range

Frequency response of polarization

- \blacktriangleright Strength of response $\propto q^2/k$
- Frequency range set by resonant frequency $\omega_0 = \sqrt{k/m}$
- \blacktriangleright Width of resonance set by damping γ/m

Dipolar polarization

- What if molecules in solid have built-in dipole \vec{p} ?
- In response to field, they can produce additional induced dipole (electronic/ionic)
- Additionally, they can rotate to align with the field!
- Without field, dipoles in random direction \Rightarrow average = 0
- \blacktriangleright With field, probability of dipole with given $\cos\theta$ with respect to field

$$P(\cos\theta) \propto \exp \frac{-(-\vec{p} \cdot \vec{E})}{k_B T} = \exp \frac{pE\cos\theta}{k_B T}$$

Thermal average dipole moment:

$$\overline{p} = \frac{\int_{-1}^{1} \mathrm{d}\cos\theta P(\cos\theta)p\cos\theta}{\int_{-1}^{1} \mathrm{d}\cos\theta P(\cos\theta)} = \frac{\int_{-1}^{1} \mathrm{d}\cos\theta p\cos\theta\exp\frac{pE\cos\theta}{k_{B}T}}{\int_{-1}^{1} \mathrm{d}\cos\theta\exp\frac{pE\cos\theta}{k_{B}T}}$$
$$= \frac{k_{B}T\frac{\partial}{\partial E}\int_{-1}^{1} \mathrm{d}\cos\theta\exp\frac{pE\cos\theta}{k_{B}T}}{\int_{-1}^{1} \mathrm{d}\cos\theta\exp\frac{pE\cos\theta}{k_{B}T}} = \frac{k_{B}T\partial}{\partial E}\log\int_{-1}^{1} \mathrm{d}\cos\theta\exp\frac{pE\cos\theta}{k_{B}T}$$

Rensselaer

Dipole rotational response

$$\overline{p} = k_B T \frac{\partial}{\partial E} \log \int_{-1}^{1} d\cos\theta \exp\frac{pE\cos\theta}{k_B T}$$

$$= k_B T \frac{\partial}{\partial E} \log\left[\frac{k_B T}{pE} \left(\exp\frac{pE}{k_B T} - \exp\frac{-pE}{k_B T}\right)\right]$$

$$= k_B T \frac{\partial}{\partial E} \left[\log\sinh\frac{pE}{k_B T} - \log E + \text{const.}\right]$$

$$= k_B T \left[\frac{p}{k_B T} \coth\frac{pE}{k_B T} - \frac{1}{E}\right]$$

$$= E \frac{p^2}{k_B T} \left[\frac{k_B T}{pE} \coth\frac{pE}{k_B T} - \left(\frac{k_B T}{pE}\right)^2\right]$$

$$\alpha = \frac{p^2}{k_B T} \left[\frac{\frac{pE}{k_B T} \coth\frac{pE}{k_B T} - 1}{\left(\frac{pE}{k_B T}\right)^2}\right]$$

Frequency response of polarization

• At low fields $\alpha = \frac{p^2}{k_B T}$

• Response decays due to saturation at fields $\sim \frac{k_B T}{n}$

Maximum induced dipole = p (complete alignment)!

Sources of polarization summary

- Single material would have multiple contributions which add together
- Electronic
 - Typically weakest response
 - Extends to highest frequency (visible/ultraviolet)
- Ionic
 - Stronger than electronic
 - Extends to vibrational frequency range (infrared)
- Dipole
 - Stronger than ionic for dipolar molecular materials
 - Extends to rotational frequency range (microwave/IR)
- Interfacial / defect charges
 - Slowest response (if present)
- ▶ (See Fig. 7.15 in Kasap)

Insulation

- Metals: high conductivity
- Semiconductors: lower, but controllable conductivity
- Insulators: minimize conductivity

Substance	$\rho \ [\Omega m]$	$\sigma \left[(\Omega m)^{-1} \right]$
Silver	$1.59 imes 10^{-8}$	$6.30 imes 10^7$
Copper	$1.68 imes 10^{-8}$	$5.96 imes10^7$
Tungsten	$5.6 imes10^{-8}$	$1.79 imes 10^7$
Lead	2.2×10^{-7}	$4.55 imes 10^6$
Titanium	4.2×10^{-7}	2.38×10^6
Stainless steel	$6.9 imes 10^{-7}$	1.45×10^6
Mercury	9.8×10^{-7}	1.02×10^6
Carbon (amorph)	$5 - 8 \times 10^{-4}$	$1-2 \times 10^3$
Germanium	4.6×10^{-1}	2.17
Silicon	$6.4 imes 10^2$	1.56×10^{-3}
Diamond	1.0×10^{12}	1.0×10^{-12}
Quartz	$7.5 imes10^{17}$	$1.3 imes 10^{-18}$
Teflon	$10^{23} - 10^{25}$	$10^{-25} - 10^{-23}$

Insulators: band structure criteria

- What do we need to minimize conductivity?
- Large band gap ($\gtrsim 100k_BT$) to reduce intrinsic conductivity

$$\sigma_i = e(\mu_e + \mu_h)n_i = e(\mu_e + \mu_h)\sqrt{N_c N_v} \exp \frac{-E_g}{2k_B T}$$

(mobilities and $N_{c/v}$ change only by one-two orders)

- Few ionizable dopants or defects to produce free carriers ($\sigma \propto N_a, N_d$)
- First metric for insulator: small σ
- \blacktriangleright Second metric: dielectric breakdown strength $\mathcal{E}_{\rm br}$
- ▶ Field beyond which material starts conducting (a nonlinear response)

Electronic breakdown: perfect crystals

- Perfect material: still few intrinsic carriers
- Apply electric field \mathcal{E} , carrier can pick up energy $e\mathcal{E}\lambda$ before scattering
- ▶ If $e\mathcal{E}\lambda > E_g$, carrier has enough energy to produce more electron-hole pairs
- ► New electron-hole pairs accelerated by field, produce further e-h pairs ⇒ cascade / avalanche
- ▶ Characteristic field scale: $\lambda \sim 50$ nm, $E_g \sim 5 \text{ eV} \Rightarrow \mathcal{E} \gtrsim 10^8 \text{ V/m}.$
- Additional sources of free carriers for breakdown:
 - Injection from surfaces
 - Photo-ionization by light / radiation / cosmic rays

Breakdown mechanisms: materials with defects

- Thermal breakdown
 - Field amplified near some defects in material
 - ▶ Small conduction / high-frequency losses \Rightarrow local heating
 - Increased temperature \Rightarrow higher conductivity
 - More current, more heating \Rightarrow thermal runaway
- Electromechanical breakdown
 - Electric field produces stresses
 - Stresses enough to cause mechanical breakdown
 - Current pathways open up through cracks / physical contact across thin films
- Discharges in porous materials
 - Air gaps in material: lower dielectric strength
 - Discharge in the gas: current pathway bypassing solid
- (See Kasap 7.6 for more details)

Capacitor materials

- Get high capacitance by
 - High area
 - Small plate separation
 - High dielectic constant
- Ceramic capacitors: film of high-dielectric ceramics (MHz)
 - Small capacitances than types below
 - High breakdown voltage (KV) and frequency response
- Electrochemical capacitors:
 - \blacktriangleright High capacitance due to small separation (~ 1 nm between electrode and electrolyte)
 - ► Lower breakdown voltage (10-100 V) and frequency response (KHz)
- Supercapacitors:
 - Electrochemical capacitor in pseudocapacitance regime
 - Store charge by reversible redox reaction of surface species
 - \blacktriangleright Even smaller breakdown voltage (< 10 V) and frequency response (10 Hz)
- ▶ (See Kasap 7.7 for more details)

Piezo-electricity

- Centro-symmetric $(ec{r}
 ightarrow ec{r})$ crystals: no built-in dipole moment
- ▶ Non centro-symmetric crystals: can have built-in dipole per unit cell
- Strain symmetric material: no net dipole
- Broken symmetry: induced dipole
- Piezoelectric coefficients for induced dipole

Converse: applied field produces strain

$$S_j = d_{ij}E_i$$

► Same coefficients in both equations: why?

$$\underbrace{\frac{1}{2}E_i \cdot P_i}_{\Delta E_{\text{diel}}} = \underbrace{\frac{1}{2}T_j \cdot S_j}_{\Delta E_{\text{mech}}}$$

Piezoelectric applications

- Spark generators: induce high field using stress
- Crystal oscillators
 - Electric field coupled to mechanical oscillations
 - Design quartz crystal dimensions to set resonant frequency
 - Pickup oscillations as voltage with same frequency
 - Use electronic circuit to amplify
 - ► Stable sharp frequencies compared to electrical (*LC*) oscillators
- Precise motion at the atomic scale: use piezo-strain for STM / AFM tip motion

Rensselaer

Ferroelectricity and pyroelectricity

- \blacktriangleright NOn-centrosymmetric crystals: built in \vec{P} per unit cell
- \blacktriangleright Crystal grains could have \vec{P} in random directions: dielectric
- Ferroelectric phase transition with critical temperature T_c
- ▶ Below T_c , crystal grains (domains) align: finite \vec{P} without applied \vec{E}
- ▶ Non-centrosymmetric \Rightarrow must also be piezeoelectric
- Analgous to ferromagnetic materials (discussed in more detail next)
- Potential applications as electronic memory devices
- \blacktriangleright Dipole of ferroelectric material changes with T
- Pyroelectric coefficient dP/dT

