
MTLE-6120: Advanced Electronic Properties of Materials

Classical Drude theory of conduction

Reading:

I Kasap: 2.1 - 2.3, 2.5
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Ohm’s law

I Local Ohm’s law: current density driven by electric field

~j = σ ~E

I Current in a sample of cross section A is I = jA

I Voltage drop across a sample of length L is V = EL

I Ohm’s law defines resistance

R ≡ V

I
=
EL

jA
= σ−1 L

A

I Units: Resistance in Ω,
resistivity ρ = σ−1 in Ωm,
conductivity σ in (Ωm)−1
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Typical values at 293 K

Substance ρ [Ωm] σ [(Ωm)−1] dρ
ρdT [K−1]

Silver 1.59× 10−8 6.30× 107 0.0038
Copper 1.68× 10−8 5.96× 107 0.0039

Tungsten 5.6× 10−8 1.79× 107 0.0045
Lead 2.2× 10−7 4.55× 106 0.0039

Titanium 4.2× 10−7 2.38× 106 0.0038
Stainless steel 6.9× 10−7 1.45× 106 0.0009

Mercury 9.8× 10−7 1.02× 106 0.0009
Carbon (amorph) 5− 8× 10−4 1− 2× 103 -0.0005

Germanium 4.6× 10−1 2.17 -0.048
Silicon 6.4× 102 1.56× 10−3 -0.075

Diamond 1.0× 1012 1.0× 10−12

Quartz 7.5× 1017 1.3× 10−18

Teflon 1023 − 1025 10−25 − 10−23

Note 1/T = 0.0034 K−1 at 293 K ⇒ approximately ρ ∝ T for the best
conducting metals.
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Temperature dependence
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I Linear at higher temperatures

I Residual resistivity (constant at low T) due to defects and impurities
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Drude model setup

I Fixed nuclei (positive ion cores) + gas of moving electrons

I Electrons move freely with random velocities

I Electrons periodically scatter which randomizes velocity again

I Average time between collisions: mean free time τ

I Average distance travelled between collisions: mean free path λ

I In zero field, drift velocity (averaged over all electrons)

~vd ≡ 〈~v〉 = 0

but electrons are not stationary:

〈v2〉 = u2

I Current density carried by electrons:

~j = n(−e)~vd = 0

where n is number density of electrons + + + + +

+ + + + +

+ + + + +

+ + + + +

e-

e- e-
e-

e-
e- e-

e-

e- e-
e-

e-
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Apply electric field
I Electron starts at past time t = −t0 with random velocity ~v0

I Force on electron is ~F = (−e) ~E
I Solve equation of motion till present time t = 0:

m
d~v

dt
= (−e) ~E

~v = ~v0 −
e ~Et0
m

I Need to average over all electrons
I Probability that electron started at −t0 and did not scatter till t = 0 is

P (t0) ∝ e−t0/τ = e−t0/τ/τ (normalized)

I Probability distribution of initial velocities satisfies∫
d~v0P (~v0) = 1 (normalized)∫

d~v0P (~v0)~v0 = 0 (random)
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Drift velocity in electric field

I Drift velocity is the average velocity of all electrons

~vd ≡ 〈~v〉

≡
∫

d~v0P (~v0)

∫ ∞
0

dt0P (t0)

(
~v0 −

e ~Et0
m

)

=

∫
d~v0P (~v0)~v0

∫ ∞
0

dt0P (t0)−
∫

d~v0P (~v0)

∫ ∞
0

dt0P (t0)
e ~Et0
m

= 0 · 1− 1 ·
∫ ∞

0

dt0
e−t0/τ

τ

e ~Et0
m

=
−e ~E
mτ

·
∫ ∞

0

t0dt0e
−t0/τ

=
−e ~E
mτ

· τ2

(∫ ∞
0

xndxe−ax =
n!

an+1

)
=
−e ~Eτ
m
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Drude conductivity

I Current density carried by electrons:

~j = n(−e)~vd = n(−e)

(
−e

~Eτ

m

)
=
ne2τ

m
~E

I Which is exactly the local version of Ohm’s law with conductivity

σ =
ne2τ

m

I For a given metal, n is determined by number density of atoms and
number of ‘free’ electrons per atom

I e and m are fundamental constants

I Predictions of the model come down to τ (discussed next)

I Later: quantum mechanics changes τ , but above classical derivation
remains essentially correct!
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Classical model for scattering

I Electrons scatter against ions (nuclei + fixed core electrons)

I Scattering cross-section σion: projected area within which electron would
be scattered

I WLOG assume electron travelling along z

I Probability of scattering between z and dz is

−dP (z) = P (z)σiondz︸ ︷︷ ︸
dVeff

nion

where nion is number density of ions
and dVeff is the volume from which
ions can scatter electrons

I This yields P (z) ∝ e−σionnionz

I ⇒ Mean free path

λ =
1

nionσion + + + + +

+ + + + +

+ + + + +

+ + + + +

e-
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Classical estimate of scattering time

I From Drude model, τ = σm/(ne2)

I Experimentally, σ ∝ T−1 ⇒ τ ∝ T−1

I From classical model, τ = λ/u, where u is average electron speed

I λ = 1/(nionσion) should be T -independent

I Kinetic theory: 1
2mu

2 = 3
2kBT ⇒ u =

√
3kBT/m

I Therefore classical scattering time

τ =
λ

u
=

1

nionσion

√
3kBT/m

∝ T−1/2

gets the temperature dependence wrong
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Comparisons for copper
I Experimentally:

σ = 6× 107 (Ωm)−1 (at 293 K)

n = nion =
4

(3.61 Å)3
= 8.5× 1028 m−3

τ =
σm

ne2
=

6× 107 (Ωm)−1 · 9× 10−31 kg

8.5× 1028 m−3(1.6× 10−19 C)2
= 2.5× 10−14 s

I Classical model:

σion ∼ π(1 Å)2 ∼ 3× 10−20 m2

λ =
1

nionσion
∼ 1

8.5× 1028 m−3 · 3× 10−20 m2
∼ 4× 10−10 m

u =

√
3kBT

m
=

√
3 · 1.38× 10−23 J/K · 293 K

9× 10−31 kg
= 1.2× 105 m/s

τ =
λ

u
∼ 3× 10−15 s

I Need σion to be 10x smaller to match experiment
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What changes in quantum mechanics?

1. Electron velocity in metals is (almost) independent of temperature
I Pauli exclusion principle forces electrons to adopt different velocities
I ‘Relevant’ electrons have Fermi velocity vF (=1.6× 106 m/s for copper)

2. Electrons don’t scatter against ions of the perfect crystal
I Electrons are waves which ‘know’ where all the ions of the crystal are
I They only scatter when ions deviate from ideal positions!
I Crude model σion = πx2 for RMS displacement x
I Thermal displacements 1

2
kx2 = 1

2
kBT

I Spring constant k ∼ Y a ∼ (120 GPa)(3.6Å/
√
2) ∼ 30 N/m

I

σion =
πkBT

k
∼ 4× 10−22 m2 (at room T )

I

τ =
1

nionσionvF
=

k

nionπkBTvF
∼ 1.7× 10−14 s (at room T )

I Correct 1/T dependence and magnitude at room T (expt: 2.5× 10−14 s)!
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Matthiessen’s rule

I Perfect metal: τT ∝ T−1 due to scattering against thermal vibrations (so
far)

I Impurity and defect scattering contribute τI ∝ T 0

I Scattering rates (not times) are additive, so net τ given by

τ−1 = τ−1
T + τ−1

I + · · ·

I Resistivity ρ ∝ τ−1 ∼ ρ0 +AT with residual resistivity ρ0 due to τI

Is the experimental data strictly ρ0 +AT?
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Mobility

I Drude conductivity in general

σ =
nq2τ

m
= n|q|µ

where n is the number density of charge carriers q with mobility

µ =
|q|τ
m

effectively measuring the conductivity per unit (mobile) charge

I In metals, q = −e since charge carried by electrons (so far)

I In semiconductors, additionally q = +e for holes and

σ = e(neµe + nhµh)

I Semiconductors have typically higher µ, substantially lower n and σ
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Hall effect

I Apply magnetic field perpendicular to current: voltage appears in third
direction

I Hall coefficient defined by

RH =
Ey
jxBz

=
VH/W

I/(Wd)Bz
=
VHd

IBz

I Simple explanation in Drude model

I Average driving force on carriers now

~F = q( ~E + ~vd × ~B)

= q(Exx̂− (vd)xBz ŷ)

I Steady-state current only in x̂

I ⇒ Ey = (vd)xBz develops to cancel Fy
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Hall coefficient in metals

I Note Ey = (vd)xBz, while jx = nq(vd)x
I Eliminate (vd)x to get

RH ≡
Ey
jxBz

=
1

nq

I In particular, q = −e for electronic conduction ⇒ RH = −1/(ne)

I Compare to experimental values:

Metal Experiment RH [m3/C] Drude RH [m3/C]
Cu −5.5× 10−11 −7.3× 10−11

Ag −9.0× 10−11 −10.7× 10−11

Na −2.5× 10−10 −2.4× 10−10

Cd +6.0× 10−11 −5.8× 10−11

Fe +2.5× 10−11 −2.5× 10−11

I Good agreement for ‘free-electron’ metals

I Wrong sign for some (transition metals)!
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Hall coefficient in semiconductors

I Remember: conductivities due to electrons and holes add
σ = e(neµe + nhµh)

I Different drift velocities for electrons and holes

I For each of electrons and holes
I Given driving force ~F , drift velocity ~vd = ~Fτ/m
I Mobility µ ≡ |q|τ/m, so ~vd = ~Fµ/|q|
I Driving force Fy = q(Ey − (vd)xBz)
I Corresponding drift velocity (vd)y = Fyµ/|q|
I And corresponding current
jy = nq(vd)y = nqFyµ/|q| = nq2(Ey − (vd)xBz)µ/|q|

I Substitute (vd)x = (qEx)µ/|q| to get
jy = nµ(|q|Ey − qExµBz)

I Net jy must be zero (that’s how we got Hall coefficient before):

0 = neµe(eEy + eExµeBz) + nhµh(eEy − eExµhBz)
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Hall coefficient in semiconductors (continued)

I Net zero jy yields:

0 = neµe(eEy + eExµeBz) + nhµh(eEy − eExµhBz)
= (neµe + nhµh)Ey + (neµ

2
e − nhµ2

h)ExBz

⇒ RH =
Ey
jxBz

=
Ey

σExBz

= − neµ
2
e − nhµ2

h

(neµe + nhµh)σ

=
−neµ2

e + nhµ
2
h

e(neµe + nhµh)2

I Reduces to metal result if nh = 0

I Note holes conrtibute positive coefficient, while electrons negative (not
additive like conductivity)

I Transition metals can have positive Hall coefficients for the same reason!
(Explained later with band structures.)
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Frequency-dependent conductivity

I So far, we applied fields ~E constant in time

I Now consider oscillatory field ~E(t) = ~Ee−iωt (such as from an EM wave)

I Same Drude model: free electron between collisions etc.

I Only change in equation of motion:

d~v

dt
=
q ~E

m
e−iωt

~v = ~v0 +

∫ 0

−t0
dt
q ~E

m
e−iωt

= ~v0 +
q ~E

m

[
e−iωt

−iω

]0

−t0

= ~v0 +
q ~E

m
· e

iωt0 − 1

iω
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Frequency-dependent conductivity: drift velocity

I Drift velocity is the average velocity of all electrons

~vd ≡ 〈~v〉 ≡
∫

d~v0P (~v0)

∫ ∞
0

dt0P (t0)

(
~v0 +

q ~E

m
· e

iωt0 − 1

iω

)

=

∫ ∞
0

dt0P (t0)
q ~E

m

eiωt0 − 1

iω

=

∫ ∞
0

dt0
e−t0/τ

τ

q ~E

m

eiωt0 − 1

iω

=
q ~E

imωτ

∫ ∞
0

dt0

(
e−t0(1/τ−iω) − e−t0/τ

)
=

q ~E

imωτ

(
1

1/τ − iω
− τ
) (∫ ∞

0

xndxe−ax =
n!

an+1

)
=

q ~E

imωτ
· 1− (1− iωτ)

1/τ − iω

=
q ~Eτ

m
· 1

1− iωτ
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Frequency-dependent conductivity: Drude result

I As before, ~j = nq~vd, which yields conductivity

σ(ω) =
nq2τ

m(1− iωτ)
=

σ(0)

1− iωτ

I Same as before, except for factor (1− iωτ)
(which → 1 for ω → 0 as expected)

I What does the phase of the complex conductivity mean?

I Current density has a phase lag relative to electric field

I When field changes, collisions are needed to change the current, which
take average time τ

I From constitutive relations discussion, complex dielectric function

ε(ω) = ε0 +
iσ(ω)

ω
= ε0 −

nq2/m

ω(ω + i/τ)
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Plasma frequency

I Displace all electrons by x

I Volume xA containing only electrons with charge −xAne
I Counter charge +xAne on other side due to nuclei

I Electric field by Gauss’s law:

~E =
xne

ε0
x̂

I Equation of motion of electrons:

m
d2x

dt2
= (−e)Ex = −xne

2

ε0

I Harmonic oscillator with frequency ωp given by

ω2
p =

ne2

mε0
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Drude dielectric function of metals
I Simple form in terms of plasma frequency

ε(ω) = ε0 −
nq2/m

ω(ω + i/τ)
= ε0

(
1−

ω2
p

ω(ω + i/τ)

)

I For ω � 1/τ ,

ε(ω) ≈ ε0

(
1 +

iω2
pτ

ω

)

imaginary dielectric, real conductivity (Ohmic regime)

I For 1/τ � ω < ωp,

ε(ω) ≈ ε0

(
1−

ω2
p

ω2

)

negative dielectric constant (plasmonic regime)

I For ω > ωp, positive dielectric constant (dielectric regime)
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Copper dielectric function
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I For copper, ωp = 10.8 eV and τ = 25 fs

I Note 1 eV corresponds to ω = 1.52× 1015 s−1 and ν = 2.42× 1014 Hz
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